# Parasite glycoconjugates. Part 9. ${ }^{1}$ Synthesis of dec-9-enyl $\beta$-d-galactopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-d-mannopyranosyl phosphate and its epimers at the d-galactose moiety, substrate analogues for the elongating $\alpha$-D-mannopyranosylphosphate transferase in the Leishmania 

Irina A. Ivanova, ${ }^{a}$ Andrew J. Ross, ${ }^{a}$ Michael A. J. Ferguson ${ }^{b}$ and Andrei V. Nikolaev *a<br>${ }^{a}$ Department of Chemistry, University of Dundee, Dundee, UK DD1 4HN<br>${ }^{b}$ Department of Biochemistry, University of Dundee, Dundee, UK DD1 4HN<br>Received (in Cambridge) 13th January 1999, Accepted 16th April 1999

A set of phosphodisaccharides, substrate analogues, which will be used to study the acceptor substrate specificity of the Leishmania biosynthetic enzymes, have been synthesized using the trichloroacetimidate method for the glycosylation reactions, $S_{\mathrm{N}} 2$ nucleophilic displacement of triflic esters for epimerization and the glycosyl hydrogenphosphonate method for phosphorylation.

## Introduction

The Leishmania are sandfly-transmitted protozoan parasites that cause a variety of debilitating and often fatal diseases throughout the tropics and sub-tropics. All life cycle stages of all species of the Leishmania synthesize large amounts of glycoconjugate virulence-factors that contain phosphosaccharide repeating units of $[-6)-(\mathrm{R} \rightarrow 3)-\beta$-D-Galp- $(1 \rightarrow 4)-\left(\mathrm{R}^{\prime} \rightarrow 2\right)-\alpha-\mathrm{D}-$ $\operatorname{Man} p-\left(1-\mathrm{PO}_{3} \mathrm{H}-\right]_{n}$. These glycoconjugates include the most abundant surface molecule of the infectious metacyclic promastigote stage of the parasite, the lipophosphoglycan (LPG) ${ }^{2-4}$ and secreted proteophosphoglycans (PPGs) such as promastigote acid phosphatase, ${ }^{5,6}$ the promastigote filamentous mucinlike $\mathrm{PPG}^{7}$ and the amastigote-specific $\mathrm{PPG} .{ }^{8}$ The nature of the R and $\mathrm{R}^{\prime}$ groups vary according to the species of Leishmania. For example, in $L$. donovani ${ }^{2} \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$, whereas in $L$. major ${ }^{2,7}$ $\mathrm{R}^{\prime}=\mathrm{H}$ and R is mostly mono-, di- or trisaccharide made up of $\beta$-d-Galp and $\beta$-D-Arap residues. In L. aethiopica ${ }^{3} \mathrm{R}$ is mostly $\beta$-D-Gal $p$ or $\beta$-D-Gal $p(1 \rightarrow 3)-\beta$-D-Gal $p$, but $\mathrm{R}^{\prime}$ is $\alpha$-D-Man $p$ $(35 \%)$ or $\mathrm{H}(65 \%)$. In the LPG and PPGs produced by $L$. mexicana promastigotes, ${ }^{46} \mathrm{R}^{\prime}$ is $\mathrm{H}(100 \%)$ and about $20-25 \%$ of the d-galactose residues are substituted at O-3 with $\beta$-d-glucopyranose. The importance of $\mathrm{LPG}^{2}$ and, possibly, $\mathrm{PPG}^{9,10}$ for parasite infectivity and survival makes the enzymes responsible for the biosynthesis of the complex glycoconjugates of great interest.


We have recently described chemical synthesis of oligosaccharide fragments (including compounds 1-4) of the LPG of $L$. donovani, ${ }^{11,12}$ L. major ${ }^{13}$ and L. mexicana ${ }^{1}$ and the polymeric phosphoglycan chain of $L$. donovani. ${ }^{14}$ The compounds 1-4 were tested in vitro as acceptor substrates for the Leish-
mania elongating $\alpha$-D-mannopyranosylphosphate transferase (MPT) responsible for the transfer of $\alpha$-D-Manp-phosphate from GDP-Man to the growing phosphoglycan chain of the LPG. It has been shown ${ }^{15}$ that the phosphorylated oligosaccharides $\mathbf{1}, \mathbf{3}$, and $\mathbf{4}$ are essentially equally efficient as exogenous acceptor substrates for the MPT and that the nonphosphorylated disaccharide $\mathbf{2}$ is inactive.
Thus, the minimal structure exhibiting the acceptor substrate activity is the $\beta$-D-Galp-( $1 \rightarrow 4$ )- $\alpha$-D-Manp-phosphate 1 , representing just one repeating unit of the LPG and PPG backbone. The inability of the disaccharide $\mathbf{2}$ to act as an acceptor indicates that the presence of a phosphodiester group preceding the acceptor site is important for the recognition by the enzyme. All the compounds $\mathbf{1 - 4}$ contain a dec-9-enyl moiety that assists biochemical assays.

A set of compounds 5-12, structural analogues of the phosphodisaccharide $\mathbf{1}$, has been designed to test acceptor substrate specificity of the MPT. They differ from substrate 1 either by the opposite configuration of the specific carbon atoms in D-galactose (5-8) or D-mannose ( 9 and 10) residues, or by deoxygenation at $\mathrm{C}-6$ (11) or $\mathrm{C}^{-6}$ (12). The information obtained from testing the acceptor activity of the substrate analogues 5-12 will be used to predict which sugar hydroxy groups are involved in enzyme-substrate recognition events and to design potential enzyme inhibitors.

We now report the chemical synthesis of the disaccharide phosphates 5-8, which are epimers of the substrate $\mathbf{1}$ at $\mathrm{C}-1, \mathrm{C}$ 2, C-3 or C-4 of the D-galactopyranose moiety, respectively. In this context, an improved (shortened) preparation of the phosphodisaccharide $\mathbf{1}$ is also described. The original synthesis ${ }^{12}$ included several extra steps, which were only required for the preparation of the long-chain phospho-oligosaccharides (e.g., compounds 3 and 4).

## Results and discussion

The synthetic schemes for the preparation of the phosphodisaccharides $\mathbf{1}$ and $\mathbf{5 - 8}$ include a few general synthetic steps (see Scheme 1): 1) synthesis of the fully $O$-benzoylated disaccharide derivatives $\mathbf{A} ; 2$ ) anomeric de- $O$-benzoylation $(\longrightarrow \mathbf{B})$; 3) preparation of the glycosyl H-phosphonate derivatives $\mathbf{C}$; 4) their coupling to dec-9-en-1-ol using the glycosyl H-phosphonate method ${ }^{16}$ to form the protected phosphodiesters $\mathbf{D}$; and 5) total de- $O$-benzoylation.


$\beta$-d-Glcp-(1 $\rightarrow 4$ )- $\alpha$-d-Manp-1-PO3 $\mathrm{H}-\mathrm{OR}$

$\beta-$-Galp-(1 $\rightarrow 4$ )- $\alpha-$ d-Glcp-1- $\mathrm{PO}_{3} \mathrm{H}-\mathrm{OR}$

$\beta$-d-Galp-(1 $\rightarrow 4$ )- $\alpha$-d-Altp-1-PO3 $\mathrm{H}-\mathrm{OR}$

$\beta$-d-Galp-( $1 \rightarrow 4$ )- $\alpha$-d-Rhap-1- $\mathrm{PO}_{3} \mathrm{H}-\mathrm{OR}$


A
B


Scheme 1 Sug = 2,3,4,6-tetra- $O$-benzoyl- $\beta$-d-galactopyranosyl, 2,3,4, 6 -tetra- $O$-benzoyl- $\alpha$-D-galactopyranosyl, $\quad 2,3,4,6$-tetra- $O$-benzoyl- $\beta$-Dtalopyranosyl, 2,3,4,6-tetra- $O$-benzoyl- $\beta$-D-gulopyranosyl, or 2,3,4,6-tetra- $O$-benzoyl- $\beta$-D-glucopyranosyl.

The octa- $O$-benzoyl- $\beta$-D-galactopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-Dmannopyranose 17 (which is a precursor of the phosphodisaccharide 1; Scheme 2) was prepared in $74 \%$ yield by the glycosylation of 1,2,3,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranose 15 (ref. 11) with the $\alpha$-D-galactosyl trichloroacetimidate 14 in the presence of trimethylsilyl triflate (TMS triflate) and molecular sieves $4 \AA$. The imidate $\mathbf{1 4}$ in turn was synthesized in $89 \%$ yield by the reaction of the hemiacetal 13 (prepared in $100 \%$ yield from 1,2,3,4,6-penta- $O$-benzoyl- $\alpha$-D-galactopyranose by consecutive 1-bromination and mild hydrolysis, see Experimental section) with trichloroacetonitrile in the presence of 1,8 diazabicyclo[5.4.0]undec-7-ene (DBU). ${ }^{17}$ It is worthy of note that condensation of the tetrabenzoate 15 and galactosyl $S$-(2-pyridyl) thiocarbonate 16, which was reported ${ }^{18}$ to be an efficient glycosyl donor, in the presence of $\mathrm{AgSO}_{3} \mathrm{CF}_{3}$ (or $\mathrm{MeSO}_{3} \mathrm{CF}_{3}$ ) produced the disaccharide $\mathbf{1 7}$ in $18 \%$ yield only.

The $\alpha-(1 \rightarrow 4)$-linked disaccharide 23 (which is a precursor of the phosphodisaccharide 5; Scheme 3) was synthesized using
the previously described disaccharides 21 (ref. 11) or 22 (ref. 1) as starting materials. Compound 22 was converted to the disaccharide 23 in $46 \%$ yield by consecutive cleavage of 3 - $O$-benzyl group by hydrogenolysis over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ and $6-O-$ tert-butyldiphenylsilyl group with $3 \% \mathrm{HCl}$ in MeOH followed by conventional benzoylation. Similar reprotection of the derivative 21, using HCl in MeOH for de- $O$-acetylation, ${ }^{19}$ gave compound 23 in $41 \%$ yield.
The preparation of the octa- $O$-benzoyl- $\beta$-D-talopyranosyl$(1 \rightarrow 4)$ - $\alpha$-D-mannopyranose 27 , which is a precursor of the phosphodisaccharide 6 (Scheme 4), has been recently described. ${ }^{20}$

The octa- $O$-benzoyl- $\beta$-D-gulopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-mannopyranose 37 (which is a precursor of the phosphodisaccharide 7; Scheme 5) was prepared starting from the disaccharide derivatives 31 (ref. 1) or $\mathbf{3 3}$ (ref. 20) followed by epimerization at C-3' via an $S_{\mathrm{N}} 2$ reaction. Reaction of the monohydroxylic compound 31 with triflic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of pyridine gave the triflate 32 ( $95 \%$ ), which reacted smoothly with tetrabutylammonium benzoate $\left(\mathrm{Bu}_{4} \mathrm{NOBz}\right)$ in toluene to give the gulosylmannose derivative $\mathbf{3 5}$ in an excellent yield. Alternatively, selective triflylation of the $2^{\prime}, 3^{\prime}-\mathrm{diol} 33$ at $-60^{\circ} \mathrm{C}$ afforded exclusively the $3^{\prime}-O$-triflate $\mathbf{3 4}$, as determined from a low-field chemical shift of the $\mathrm{H}-3^{\prime}$ signal in the $\mathrm{H}^{1}$ NMR spectrum (in comparison with the diol 33). Reaction of the triflate 34 with $\mathrm{Bu}_{4} \mathrm{NOBz}(\longrightarrow \mathbf{3 6})$ and subsequent benzoylation gave the gulosylmannose disaccharide 35 (overall yield of $52 \%$ ) along with $1,2,3,4,6$-penta- $O$-benzoyl- $\alpha$-D-mannopyranose $(34 \%)$. The latter could be formed from 1,2,3,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranose $\mathbf{1 5}$, which in turn seemed to arise from the guloside 36 in the presence of $\mathrm{Bu}_{4} \mathrm{NOBz}$ owing to intramolecular participation of the $2^{\prime}-\mathrm{OH}$ group leading to the formation of the corresponding 1,2-anhydro-Dgulose derivative with simultaneous cleavage of the glycosidic bond.

The disaccharide 35 was converted to the octa- $O$-benzoate 37 ( $91 \%$ ) by hydrolysis with $80 \%$ acetic acid followed by conventional benzoylation. The D-gulo-configuration of the non-reducing monosaccharide residue in the disaccharides 35 and 37 was clearly confirmed by the characteristic values of $J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=3.0 \mathrm{~Hz}$ in ${ }^{1} \mathrm{H}$ NMR spectra.

The octa- $O$-benzoyl- $\beta$-D-glucopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-manno-


Scheme 2 Reagents: i, $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, di-S-(2-pyridyl) dithiocarbonate, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, TMS triflate, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}$ (or $\mathrm{MeSO}_{3} \mathrm{CF}_{3}$ ), MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeCN}-\mathrm{THF}$; vi, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water ( pH 7 ); vii, (a) dec-9-en-1-ol, adamantane-1-carbonyl chloride, pyridine; (b) $\mathrm{I}_{2}$, pyridine-water; viii, $\mathrm{NaOMe}, \mathrm{MeOH}$.
pyranose 44 (which is a precursor of the phosphodisaccharide 8; Scheme 6) was synthesized in $56 \%$ yield by the glycosylation of the tetra- $O$-benzoate $\mathbf{1 5}$ with the $\alpha$-D-glucosyl trichloroacetimidate $\mathbf{4 2}$ in the presence of TMS triflate and molecular sieves $4 \AA$. The imidate 42 in turn was prepared ( $93 \%$ ) from the hemiacetal 41 (ref. 21) as described above for the preparation of the galactose analogue 14 . It should be noted that the condensation of the compound 15 and the benzobromoglucose 43 in the presence of $\mathrm{Hg}(\mathrm{CN})_{2}-\mathrm{HgBr}_{2}$ in acetonitrile produced the disaccharide $44(33 \%)$ along with the $\alpha$-linked isomer 47 (16\%).

The $\beta$-configuration of newly formed glycosidic linkages in the disaccharides $\mathbf{1 7}$ and $\mathbf{4 4}$ followed from the characteristic values of $J_{1^{\prime}, 2^{\prime}}(7.7-7.8 \mathrm{~Hz})$ in ${ }^{1} \mathrm{H}$ NMR spectra. For the $\alpha$-Dglucoside 47 the corresponding value is $J_{1^{\prime}, 2^{\prime}}=3.9 \mathrm{~Hz}$.

Anomeric de- $O$-benzoylation ${ }^{1,11-13,16,21}$ of the disaccharide octabenzoates 17, 23, 27, 37 and 44 with dimethylamine in $\mathrm{CH}_{3} \mathrm{CN}$-THF afforded the $\alpha$-hemiacetal derivatives $\mathbf{1 8}, 24,28$, 38 and 45 ( $73-81 \%$ ), respectively, which then were phosphonylated with triimidazolylphosphine (prepared in situ from $\mathrm{PCl}_{3}$, imidazole and $\mathrm{Et}_{3} \mathrm{~N}$ ) followed by mild hydrolysis to produce the glycosyl H-phosphonates 19, 25, 29, 39 and 46, respectively, in excellent yields. The structures of the disaccharide H-phosphonates were clearly confirmed by NMR data (see Experimental section). For example, signals characteristic of


Scheme 3 Reagents: i, $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, methanol-ethyl acetate; ii, HCl , $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, PhCOCl , pyridine; iv, $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeCN}-\mathrm{THF}$; v, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water (pH 7); vi, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) $\mathrm{I}_{2}$, pyridine-water; vii, NaOMe , MeOH .
the H-phosphonate group $\left[\delta_{\mathrm{P}} 0.13 ; \delta_{\mathrm{H}} 5.70\right.$ (dd, $J_{1,2} 1.9, J_{1, \mathrm{P}} 9.5$, $1-\mathrm{H}), 7.00\left(\mathrm{~d},{ }^{1} J_{\mathrm{H}, \mathrm{P}} 637 \mathrm{~Hz}, \mathrm{HP}\right)$ ] were present in the ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra of the disaccharide 46. The $\alpha$-configuration of the D-mannopyranosyl residue followed from the characteristic positions of the $1-, 3-$ and $5-\mathrm{H}$ resonances. The structures 19, 25, 29 and 39 were established in similar manner.
The disaccharide H-phosphonates 19, 25, 29, 39 and 46 were converted to the protected phosphodiesters 20, 26, 30, 40 and 48 ( $70-93 \%$ ), respectively, by their condensation with dec-9-en-1-ol in pyridine in the presence of trimethylacetyl chloride (or adamantane-1-carbonyl chloride) followed by oxidation of the resulting H -phosphonic diesters with iodine in aq. pyridine. The deprotected phosphodisaccharides $\mathbf{1}$ and 5-8 were prepared from the derivatives $\mathbf{2 0}, \mathbf{2 6}, \mathbf{3 0}, 40$ and $\mathbf{4 8}$, respectively, by de- $O$-benzoylation with $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ methanolic sodium methoxide in $85-97 \%$ yield.

The structures of the compounds $\mathbf{1}$ and $\mathbf{5 - 8}$ were confirmed by NMR and mass spectrometric data. The ${ }^{31} \mathrm{P}$ NMR spectra exhibited single signals ( $\delta_{\mathrm{P}}$ between -1.36 and -1.73 ppm ), which are characteristic of glycoside-linked phosphodiesters. ${ }^{1,11-14,16,21}$ The presence of $(1 \rightarrow 1)$-phosphodiester linkage at the reducing terminus of each of the phosphodisaccharides was confirmed by the C-1 and C-2 signals of the D-mannose and the dec-9-en-1-yl units (see Table 1). These signals were shifted as a result of the $\alpha$ - and $\beta$-effects of phos-

Table $1{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR data $\left[\delta_{\mathrm{C}}\right.$ and $\delta_{\mathrm{P}}$ in ppm; $J_{\mathrm{C}, \mathrm{P}}$ in Hz (in parentheses); spectra recorded in $\left.\mathrm{D}_{2} \mathrm{O}\right]$ and ESMS( - ) data ( $\mathrm{m} / \mathrm{z}$ ) for the phosphooligosaccharides $\mathbf{1}$ and 5-8

| Resid. | Atom | $1^{a}$ | $5^{\text {b }}$ | $6^{a}$ | $7^{a}$ | $8^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dec-9-enyl | $\mathrm{OCH}_{2} \mathrm{CH}_{2}$ | 67.76d (5.1) | 67.63 br | 67.95d (5.5) | 68.10d (6.3) | 67.76d (6.8) |
|  | $\mathrm{OCH}_{2} \mathrm{CH}_{2}$ | 30.88br | 30.79br | 31.07d (6.6) | 31.42d (6.3) | 30.88d (7.8) |
|  | - $\mathrm{CH}=$ | 141.52 | 141.32 | 141.64 | 141.88 | 141.49 |
|  | $=\mathrm{CH}_{2}$ | 115.07 | 114.96 | 115.20 | 115.52 | 115.11 |
| Mannose | C-1 | 96.86 br | 96.83d (4.4) | 97.05d (6.5) | 97.22d ( $\sim 5$ ) | 96.79 d (5.6) |
|  | C-2 | 71.20d (7.6) | 71.48 d (8.8) | 71.39 d (8.8) | 71.55d (7.5) | 70.78d (7.8) |
|  | C-3 | 69.73 | 69.81 | 69.94 | 70.29 | 69.81 |
|  | C-4 | 76.97 | 76.28 | 77.69 | 77.76 | 77.36 |
|  | C-5 | 73.41 | 73.25 | 73.35 | 73.72 | 73.38 |
|  | C-6 | 61.18 | 61.66 | 61.53 | 61.52 | 61.16 |
| Aldose ${ }^{\prime}$ | C-1' | 104.12 | 101.45 | 101.97 | 102.50 | 103.73 |
|  | C-2' | 72.04 | 70.16 | 72.09 | 69.55 | 74.26 |
|  | C-3' | 73.62 | 71.43 | 69.49 | 72.66 | 77.12 |
|  | C-4' | 69.82 | 70.39 | 69.94 | 70.79 | 70.69 |
|  | C-5' | 76.46 | 72.70 | 77.44 | 75.61 | 76.59 |
|  | C-6' | 62.20 | 62.07 | 62.50 | 62.57 | 61.82 |
|  | P | -1.68 | -1.54 | -1.46 | -1.73 | -1.36 |
|  | $\mathrm{m} / \mathrm{z}^{\mathrm{c}}$ | 559.0 | 559.3 | 559.3 | 559.1 | 559.0 |

${ }^{a}$ Additional signals of $\mathrm{Et}_{3} \mathrm{NH}^{+}\left[\delta_{\mathrm{C}} 9.33-9.74\left(\mathrm{CH}_{3}\right)\right.$ and $\left.\delta_{\mathrm{C}} 47.77-48.12\left(\mathrm{CH}_{2}\right)\right]$ were present. ${ }^{a, b}$ Additional signals of $\mathrm{CCH}_{2} \mathrm{C}\left[\delta_{\mathrm{C}} 25.87-26.50\right.$, $29.10-30.16$ and 34.07-34.50] were present. ${ }^{c}$ For compounds $\mathbf{1}$ and 5-8 (triethylammonium salt), $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{NO}_{14} \mathrm{P}$ requires $M, 661.34$.



30
iv $\begin{array}{r} \\ 6 \\ 6\end{array}$
Scheme 4 Reagents: i, $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeCN}-\mathrm{THF}$; ii, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water ( pH 7 ); iii, (a) dec-9-en-1ol, trimethylacetyl chloride, pyridine; (b) $\mathrm{I}_{2}$, pyridine-water, iv, NaOMe , MeOH .
phorylation and were coupled with phosphorus (or broadened). The $\alpha$-configuration of the D-mannosyl phosphate fragments followed from the positions of the C-3 and C-5 resonances of Man. The chemical shifts of these signals are close to those of C-3 and C-5 of $\alpha$-D-mannopyranosyl phosphate ${ }^{22}$ taking into account the influence of the glycosyl substituents at position-4. In addition, the spectrometric data of compound 1 were nearly identical with the data reported previously. ${ }^{12}$

The molecular masses of the phosphodiesters $\mathbf{1}$ and $5-8$ were confirmed by electrospray mass spectrometry. The signals in the ES( - ) mass spectra corresponded to the pseudomolecular ions for the disaccharide phosphates ( $m / z \sim 559$, $\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}$). The structures of the protected phosphodiesters 20, 26, 30, 40 and 48 were established in similar manner.

A biochemical evaluation of compounds $\mathbf{1}$ and $5-\mathbf{8}$ will be published elsewhere in due course.

## Experimental

General procedures
Optical rotations were measured with a Perkin-Elmer 141 polarimeter; $[a]_{\mathrm{D}}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. NMR spectra $\left({ }^{1} \mathrm{H}\right.$ at 200 and $500 \mathrm{MHz},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at 50.3 and 125 MHz , and ${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ at 81 and 202.5 MHz ) were recorded with Bruker AM-200 and AM-500 spectrometers for solutions in $\mathrm{CDCl}_{3}$, unless otherwise indicated. Chemical shifts ( $\delta$ in ppm) are given relative to those for $\mathrm{Me}_{4} \mathrm{Si}$ for $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ and external aq. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (for ${ }^{31} \mathrm{P}$ ); $J$-values are given in Hz . ES mass spectra were recorded with a Micromass Quattro system (Micromass Biotech, UK). TLC was performed on Kieselgel 60 $\mathrm{F}_{254}$ (Merck) with $A$, toluene-ethyl acetate $(9: 1) ; B$, tolueneethyl acetate ( $8: 2$ ); $C$, toluene-ethyl acetate $(7: 3) ; D$, dichloro-methane-methanol (9:1); $E$, chloroform-methanol (8:2); and $F$, chloroform-methanol-water $(10: 10: 3)$ as developers and detection under UV light or by charring with sulfuric acid-water-ethanol ( $15: 85: 5$ ). Flash-column chromatography (FCC) was performed on Kieselgel 60 ( $0.040-0.063 \mathrm{~mm}$ ) (Merck). Dichloromethane, acetonitrile and toluene were freshly distilled from $\mathrm{CaH}_{2}$. Solutions worked up were concentrated under reduced pressure at $<40^{\circ} \mathrm{C}$.

## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha, \beta$-D-galactopyranose 13

To a solution of 1,2,3,4,6-penta- $O$-benzoyl- $\alpha$-D-galactopyranose ${ }^{23}(3 \mathrm{~g}, 4.28 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added a $33 \%$ solution ( $10 \mathrm{~cm}^{3}$ ) of HBr in AcOH containing $0.2 \mathrm{~cm}^{3}$ of $\mathrm{Ac}_{2} \mathrm{O}$. After storage for 2 h at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with ice-water and saturated aq. $\mathrm{NaHCO}_{3}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give syrupy $2,3,4,6$-tetra- $O$-benzoyl- $\alpha$-D-galactopyranosyl bromide $(2.82 \mathrm{~g}, 100 \%),[\alpha]_{\mathrm{D}}^{22}+157\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 4.47(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.93(1 \mathrm{H}, \mathrm{t}$, $\left.J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.5,5-\mathrm{H}\right), 5.67\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.3,2-\mathrm{H}\right), 6.05(1 \mathrm{H}$, dd, $\left.J_{3,4} 3.2,3-\mathrm{H}\right), 6.15(1 \mathrm{H}$, br d, $4-\mathrm{H}), 7.00\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 4.0\right.$, $1-\mathrm{H})$ and $7.20-8.30(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph})$.

Silver carbonate $(3.56 \mathrm{~g}, 12.9 \mathrm{mmol})$ was added to a solution of the prepared galactosyl bromide in $4: 1$ acetone-water (100 $\mathrm{cm}^{3}$ ), and the mixture was stirred for 2.5 h at room temperature (rt). The suspension was filtered through a Celite pad, and the filtrate was concentrated to give the hemiacetal $13(2.55 \mathrm{~g}$, $100 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{22}+100\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ lit., ${ }^{24}$ $\left.[a]_{\mathrm{D}}^{27}+127\left(c 1, \mathrm{CHCl}_{3}\right)\right\} ; \delta_{\mathrm{H}} 4.40\left(\mathrm{~m}, 6-\mathrm{H}^{\mathrm{a}}\right), 4.54-4.75\left(\mathrm{~m}, 6-\mathrm{H}^{\mathrm{b}}\right)$, $4.87\left(\mathrm{t}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.3,5-\mathrm{H}^{\alpha}\right), 5.07\left(\mathrm{~d}, J_{1,2} 6.8,1-\mathrm{H}^{\beta}\right), 5.62-5.73$






35
36


Scheme 5 Reagents: $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ pyridine; ii, $\mathrm{Bu}_{4} \mathrm{NOBz}$, toluene; iii, PhCOCl , pyridine; iv, $80 \% \mathrm{AcOH}$; v, $\mathrm{Me}_{2} \mathrm{NH}$, MeCN-THF; vi, (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water ( pH 7 ); vii, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) $\mathrm{I}_{2}$, pyridine-water; viii, $\mathrm{NaOMe}, \mathrm{MeOH}$.
$\left(\mathrm{m}, 2-\mathrm{H}\right.$ and $\left.3-\mathrm{H}^{\beta}\right), 5.85\left(\mathrm{~d}, J_{1,2} 3.6,1-\mathrm{H}^{\alpha}\right), 6.00\left(\mathrm{~d}, J_{3,4} 2.7\right.$, $\left.4-\mathrm{H}^{\beta}\right), 6.10\left(\mathrm{~m}, 3-\mathrm{H}^{\alpha}\right.$ and $\left.4-\mathrm{H}^{\alpha}\right)$ and $7.10-8.20(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph})$; $\alpha: \beta \sim 3: 1$.

## 2,3,4,6-Tetra-O-benzoyl- $\alpha$-D-galactopyranosyl trichloroacetimidate 14

To a stirred solution of the hemiacetal $13(0.336 \mathrm{~g}, 0.56 \mathrm{mmol})$ and $\mathrm{CCl}_{3} \mathrm{CN}\left(2 \mathrm{~cm}^{3}, 20 \mathrm{mmol}\right)$ in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ cooled to $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{DBU}\left(0.084 \mathrm{~cm}^{3}, 0.56 \mathrm{mmol}\right)$ under argon. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then concentrated. FCC ( $95: 5$ toluene-ethyl acetate) of the residue gave the $\alpha$-galactosyl trichloroacetimidate $14(0.369 \mathrm{~g}, 89 \%)$ as an amorphous solid, $[\alpha]_{\mathrm{D}}^{22}+141\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.56$ (solvent $A$ ); $\delta_{\mathrm{H}} 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.86$ $\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=6.0,5-\mathrm{H}\right), 5.95\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.6,2-\mathrm{H}\right)$, $6.07\left(1 \mathrm{H}\right.$, dd, $\left.J_{3,4} 3.0,3-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{dd}, J_{4,5} 1.1,4-\mathrm{H}\right), 6.90$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 3.5,1-\mathrm{H}\right), 7.15-8.10(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph})$ and $8.74(1 \mathrm{H}$, s, NH); ESMS(+) data: $m / z 579.0\left(100 \%,\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CONH}\right]^{+}\right)$ and $762.0\left(25 \%,[\mathrm{M}+\mathrm{Na}]^{+}\right)\left(\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{NO}_{10}\right.$ requires M , 739.07786).

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-D-galactopyranosyl $S$-(2-pyridyl) thiocarbonate 16

To a stirred solution of the hemiacetal $13(0.586 \mathrm{~g}, 0.95 \mathrm{mmol})$ and di-S-(2-pyridyl) dithiocarbonate ${ }^{18}(0.71 \mathrm{~g}, 2.86 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.4 \mathrm{~cm}^{3}, 2.86 \mathrm{mmol}\right)$. The mixture was stirred for 24 h at room temperature and then con-
centrated. FCC [dichloromethane-acetone $(100: 0) \rightarrow(98: 2)$ ] of the residue gave the $\beta$-galactosyl pyridylthiocarbonate 16 ( 0.366 $\mathrm{g}, 53 \%)$ as an amorphous solid, $[\alpha]_{\mathrm{D}}^{22}+126\left(c 1.15, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}} 4.50\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 5.0, J_{6 \mathrm{a}, 6 \mathrm{~b}} 9.5\right.$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 3.2,3-\mathrm{H}\right), 6.00\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.1,2-\mathrm{H}\right)$, $6.10(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 4-\mathrm{H}), 6.23\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 8.0,1-\mathrm{H}\right)$ and $7.00-8.60$ $\left(24 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$.

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-D-galactopyranosyl-( $1 \rightarrow \mathbf{4}$ )-1,2,3,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranose 17

(a) To a stirred mixture of the galactosyl trichloroacetimidate $14(0.354 \mathrm{~g}, 0.47 \mathrm{mmol})$, the tetrabenzoate $\mathbf{1 5}^{11}$ ( $0.336 \mathrm{~g}, 0.56$ mmol ) and freshly activated molecular sieves $4 \AA$ (powder, 1 g ) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ under argon was added TMS triflate $\left(0.024 \mathrm{~cm}^{3}, 0.12 \mathrm{mmol}\right)$ and the stirring was continued at rt for a further 4 h . The reaction was quenched by addition of $N, N$-diisopropylethylamine (DIPEA) $\left(0.03 \mathrm{~cm}^{3}, 0.17 \mathrm{mmol}\right)$. The solids were filtered off and the solvent was removed under reduced pressure. FCC (toluene $\longrightarrow$ solvent $A$ ) of the residue produced the disaccharide derivative $17(0.408 \mathrm{~g}, 74 \%)$ as an amorphous solid, $[\alpha]_{\mathrm{D}}^{22}+42.3\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.41$ (solvent $A$ ) (Found: C, 69.7; H, 4.7. $\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{O}_{19}$ requires $\mathrm{C}, 69.5 ; \mathrm{H}, 4.6 \%$ ); $\delta_{\mathrm{H}} 3.76-3.94\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 4.0\right.$, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 9.5,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.25\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.5,5-\mathrm{H}\right), 4.53(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.4,6-\mathrm{H}^{\mathrm{a}}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} \sim 1,6-\mathrm{H}^{\mathrm{b}}\right), 4.71(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 5.04\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.8,1^{\prime}-\mathrm{H}\right), 5.48(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2^{\prime}, 3^{\prime}} 10.5,3^{\prime}-\mathrm{H}\right), 5.77\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 5.81\left(1 \mathrm{H}\right.$, br d, $J_{3^{\prime}, 4^{\prime}} 3.3$,


Scheme 6 Reagents: i, $\mathrm{CCl}_{3} \mathrm{CN}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii, TMS triflate, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{Hg}(\mathrm{CN})_{2}, \mathrm{HgBr}_{2}, \mathrm{MeCN}$; iv, $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeCN}-\mathrm{THF}$; v , (a) triimidazolylphosphine, MeCN ; (b) $\mathrm{Et}_{3} \mathrm{NHHCO}_{3}$, water ( pH 7 7); vi, (a) dec-9-en-1-ol, trimethylacetyl chloride, pyridine; (b) $I_{2}$, pyridinewater; vii, $\mathrm{NaOMe}, \mathrm{MeOH}$.
$\left.4^{\prime}-\mathrm{H}\right), 5.85(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 6.05\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,3-\mathrm{H}\right), 6.50$ $\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.8,1-\mathrm{H}\right)$ and $7.00-8.30(40 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph})$.
(b) To a solution of the galactosyl thiopyridyl carbonate $\mathbf{1 6}$ $(0.08 \mathrm{~g}, 0.11 \mathrm{mmol})$ and the tetrabenzoate $\mathbf{1 5}^{11}(0.072 \mathrm{~g}, 0.12$ mmol ) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ were added freshly activated molecular sieves $4 \AA$ (powder, 0.3 g ). The mixture was stirred during $2-3 \mathrm{~h}$ under argon, then methyl triflate ( 0.037 $\mathrm{cm}^{3}, 0.33 \mathrm{mmol}$ ) [or, in another experiment, silver triflate ( 0.084 $\mathrm{g}, 0.33 \mathrm{mmol})$ ] was added and the stirring was continued overnight at rt . The reaction was quenched by addition of pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$. The solids were filtered off and washed with dichloromethane, and the filtrate was washed successively with saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried and concentrated. FCC (as above) gave the disaccharide derivative $17(0.023 \mathrm{~g}, 18 \%)$.

## 2,3,4,6-Tetra-O-benzoyl- $\beta$-D-galactopyranosyl-( $\mathbf{1} \rightarrow \mathbf{4}$ )-2,3,6-tri-$O$-benzoyl- $\alpha$-d-mannopyranose 18

To a solution of the disaccharide $17(0.21 \mathrm{~g}, 0.18 \mathrm{mmol})$ in
acetonitrile ( $2 \mathrm{~cm}^{3}$ ) was added $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Me}_{2} \mathrm{NH}$ in THF ( 0.9 $\mathrm{cm}^{3}, 1.8 \mathrm{mmol}$ ) and the mixture was kept at rt with monitoring by TLC (solvents $A$ and $B$ ). After $25-48 \mathrm{~h}$, the mixture was concentrated to dryness and acetonitrile was evaporated off from the residue. FCC (toluene $\longrightarrow$ solvent $B$ ) gave the disaccharide hemiacetal $18(0.157 \mathrm{~g}, 81 \%)$ as an amorphous solid, $[\alpha]_{D}^{21}$ $+32\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.35$ (solvent $B$ ) (Found: C, 68.2; H, 4.7. $\mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$ requires C, 68.4; H, 4.7\%); $\delta_{\mathrm{H}} 3.76-3.93(2 \mathrm{H}, \mathrm{m}$, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.06\left(1 \mathrm{H}\right.$, dd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 4.7, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 10.4,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.34\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{a}} 2.5,5-\mathrm{H}\right), 4.49\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.5,6-\mathrm{H}^{\mathrm{a}}\right)$, $4.58\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.1,4-\mathrm{H}\right), 4.67\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.8\right.$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 5.01\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.35(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.47$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} 3.3,3^{\prime}-\mathrm{H}\right), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.7,2-\mathrm{H}\right), 5.74(1 \mathrm{H}$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.78\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.4^{\prime}-\mathrm{H}\right), 5.98\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}\right.$ $3.4,3-\mathrm{H})$ and $7.00-8.30(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-galactopyranosyl-( $\mathbf{1} \rightarrow \mathbf{4}$ )-2,3,6-tri-$O$-benzoyl- $\alpha$-d-mannopyranosyl hydrogenphosphonate, triethylammonium salt 19

To a stirred solution of imidazole ( $0.145 \mathrm{~g}, 2.13 \mathrm{mmol}$ ) in acetonitrile $\left(7 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added phosphorus trichloride $\left(0.056 \mathrm{~cm}^{3}, 0.64 \mathrm{mmol}\right)$ and then $\mathrm{Et}_{3} \mathrm{~N}\left(0.31 \mathrm{~cm}^{3}, 2.24 \mathrm{mmol}\right)$. The mixture was stirred for 20 min , after which a solution of compound $18(0.157 \mathrm{~g}, 0.146 \mathrm{mmol})$ in $\mathrm{MeCN}\left(6 \mathrm{~cm}^{3}\right)$ was added dropwise over a period of $10-15 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at rt for $30-40 \mathrm{~min}$ and quenched with 1 mol $\mathrm{dm}^{-3}$ triethylammonium (TEA) hydrogen carbonate ( $\mathrm{pH} 7,3$ $\left.\mathrm{cm}^{3}\right)$. The clear solution was stirred for $15 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added and the organic layer was washed in turn with icecold water $\left(2 \times 25 \mathrm{~cm}^{3}\right)$ and cold $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ TEA hydrogen carbonate ( $2 \times 25 \mathrm{~cm}^{3}$ ), dried by filtration through cotton wool, and concentrated. The residue was dried in vacuo to give the hydrogenphosphonate $19(0.177 \mathrm{~g}, 98 \%)$ as a chromatographically homogeneous amorphous solid, $[a]_{\mathrm{D}}^{21}+23.6\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ 0.18 (solvent $D) ; \delta_{\mathrm{H}} 1.29\left(9 \mathrm{H}, \mathrm{t}, 3 \times \mathrm{MeCH}_{2}\right), 2.95(6 \mathrm{H}, \mathrm{q}$, $\left.3 \times \mathrm{MeCH}_{2}\right), 3.80-3.90\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.07(1 \mathrm{H}$, dd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 9.7, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 14.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.42\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 3.2,5-\mathrm{H}\right), 4.53$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.56\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right)$, $4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.2,6-\mathrm{H}^{\mathrm{b}}\right), 5.00\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.46$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.3,3^{\prime}-\mathrm{H}\right), 5.73\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.75$ $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.77\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 9.0,1-\mathrm{H}\right), 5.81(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.4^{\prime}-\mathrm{H}\right), 5.96\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3,3-\mathrm{H}\right), 7.04\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 636.3, \mathrm{HP}\right)$ and 7.20-8.20 ( $35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}$ ); $\delta_{\mathrm{P}} 0.79$; ESMS(-) data: $m / z$ $1133.0\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{NO}_{20} \mathrm{P}\right.$ requires $M$, 1235.39).

## Dec-9-enyl 2,3,4,6-tetra- $O$-benzoyl- $\boldsymbol{\beta}$-d-galactopyranosyl( $1 \rightarrow 4$ )-2,3,6-tri- $O$-benzoyl- $\alpha$-d-mannopyranosyl phosphate, triethylammonium salt 20

A mixture of the H-phosphonate 19 ( $175 \mathrm{mg}, 0.14 \mathrm{mmol}$ ) and dec-9-en-1-ol ( $0.076 \mathrm{~cm}^{3}, 0.42 \mathrm{mmol}$ ) was dried by evaporation of pyridine $\left(3 \times 2 \mathrm{~cm}^{3}\right)$ therefrom. The residue was dissolved in pyridine ( $1 \mathrm{~cm}^{3}$ ), adamantane-1-carbonyl chloride ( $70 \mathrm{mg}, 0.35$ mmol ) was added and the mixture was stirred at rt for 40 min , whereafter a freshly prepared solution of iodine ( $71 \mathrm{mg}, 0.28$ $\mathrm{mmol})$ in pyridine-water $\left(95: 5 ; 2 \mathrm{~cm}^{3}\right.$ ) was added. After 30 min , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the solution was washed successively with ice-cold $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and cold $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. TEA hydrogen carbonate, dried by filtration through cotton wool, and concentrated. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N}\right.$, 98.9 : $0.1: 1) \longrightarrow(91: 8: 1)]$ of the residue gave the phosphodiester 20 ( $144 \mathrm{mg}, 74 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{21}+15.6$ (c 0.99 , $\mathrm{CHCl}_{3}$ ); $R_{\mathrm{f}} 0.25$ (solvent $D$ ); $\delta_{\mathrm{H}} 1.30\left(19 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{MeCH}_{2}\right.$ and $\left.5 \times \mathrm{CH}_{2}\right), 1.56\left(2 \mathrm{H}\right.$, quintet, $\left.J 6.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.99(2 \mathrm{H}$, quartet $\left.J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 2.85\left(6 \mathrm{H}\right.$, quartet, $\left.3 \times \mathrm{MeCH}_{2}\right)$, $3.76\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 4.7,5^{\prime}-\mathrm{H}\right), 3.83\left(1 \mathrm{H}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 8.7,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.85-$ $3.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OC} H_{2} \mathrm{CH}_{2}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 b^{\prime}} 10.7,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.40$ ( 1 H , br dd, $5-\mathrm{H}$ ), 4.51 ( 1 H , dd, $\left.J_{5,6 \mathrm{a}} 2.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.55(1 \mathrm{H}$, $\left.J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.59\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2,6-\mathrm{H}^{\mathrm{b}}\right), 4.88$
$\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 0.9,{ }^{3} J_{\mathrm{H}, \mathrm{H}} 9.8, \mathrm{HCH}=\mathrm{CH}\right), 4.93\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$ 16.1, $\mathrm{HCH}=\mathrm{CH}$ ), $4.95\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.9,1^{\prime}-\mathrm{H}\right), 5.41(1 \mathrm{H}$, dd, $\left.J_{3^{\prime}, 4^{\prime}} 3.2,3^{\prime}-\mathrm{H}\right), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.9, J_{1, \mathrm{P}} 8.3,1-\mathrm{H}\right), 5.70(1 \mathrm{H}$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 10.2,2^{\prime}-\mathrm{H}\right), 5.73-5.77\left(3 \mathrm{H}, \mathrm{m}, 2-, 4^{\prime}-\mathrm{H}\right.$ and $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ ), $5.94\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.2,3-\mathrm{H}\right)$ and $7.00-8.10(35 \mathrm{H}$, $7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.84 ; \operatorname{ESMS}(-)$ data: $m / z 1287.0$ ( $100 \%$, $\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}^{-}\right)\left(\mathrm{C}_{77} \mathrm{H}_{84} \mathrm{NO}_{21} \mathrm{P}\right.$ requires $\left.M, 1389.53\right)$.

## Dec-9-enyl $\beta$-d-galactopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-mannopyranosyl phosphate, triethylammonium salt 1

To a solution of compound $\mathbf{2 0}(52 \mathrm{mg}, 0.037 \mathrm{mmol})$ in $4: 1$ MeOH-THF ( $15 \mathrm{~cm}^{3}$ ) was added $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic $\mathrm{NaOMe}\left(1.7 \mathrm{~cm}^{3}\right)$. The mixture was kept at room temperature for 17 h , whereafter it was deionized with Dowex 50W-X4 ( $\mathrm{H}^{+}$) resin, filtered and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After concentration, water $\left(3 \times 5 \mathrm{~cm}^{3}\right)$ was evaporated off from the residue, before it was dissolved in water and extracted (twice) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to remove any remaining methyl benzoate. The phosphodiester 1 ( $23 \mathrm{mg}, 94 \%$ ) was thereby obtained as an amorphous solid, $[a]_{\mathrm{D}}^{21}+24(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.67$ (solvent $F$ ); $\delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and $\operatorname{ESMS}(-)$ data: see Table $1\left\{\right.$ lit., ${ }^{12}[a]_{\mathrm{D}}^{22}+21.5$ (c 0.7, MeOH ); $R_{\mathrm{f}} 0.65$ (solvent $F$ ); $\left.\delta_{\mathrm{P}}-1.04\right\}$.

## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-d-galactopyranosyl-( $1 \rightarrow 4$ )-1,2,3,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranose 23

(a) A solution of HCl in MeOH [prepared at $0^{\circ} \mathrm{C}$ from acetyl chloride $\left(0.066 \mathrm{~cm}^{3}\right)$ and methanol $\left(1.65 \mathrm{~cm}^{3}\right)$ ] was added to a solution of compound $21^{11}(286 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.6 \mathrm{~cm}^{3}\right)$. After 8 h at rt, TLC (solvent $A$ ) showed the formation of one major product (presumably, the corresponding de- $O$-acetylated derivative). The mixture was evaporated to dryness and methanol (twice) was evaporated off from the residue. The residue was dissolved in pyridine ( $5 \mathrm{~cm}^{3}$ ), and benzoyl chloride ( 0.5 $\mathrm{cm}^{3}$ ) was added to the solution at $0^{\circ} \mathrm{C}$. After 16 h at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool, and concentrated. Toluene (twice) was evaporated off from the residue. Two consecutive FCCs [toluene $\longrightarrow$ solvent $A$ and then dichloromethane-ethyl acetate, $(100: 0) \longrightarrow(97.5: 2.5)]$ gave the benzoylated disaccharide $23(148 \mathrm{mg}, 41 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{26}+74.7$ ( $c 1.09$, $\mathrm{CHCl}_{3}$ ) (Found: C, 69.1; H, 4.8. $\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{O}_{19}$ requires C, $69.5 ; \mathrm{H}$, $4.6 \%) ; \delta_{\mathrm{H}} 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.8, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.2,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.51(1 \mathrm{H}$, dd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.5,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.56\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 4.0,5-\mathrm{H}\right), 4.72(1 \mathrm{H}$, dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.94\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.96$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4^{\prime}, 5^{\prime}} 1.0,5^{\prime}-\mathrm{H}\right), 5.02\left(1 \mathrm{H}\right.$, dd, $\left.J_{5,6 \mathrm{~b}} 2.0,6-\mathrm{H}^{\mathrm{b}}\right), 5.82$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.0,3^{\prime}-\mathrm{H}\right), 5.86-5.89\left(2 \mathrm{H}, \mathrm{m}, J_{1^{\prime}, 2^{\prime}} 4.3,1^{\prime}-\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 6.00(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 6.02\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.3,3-\mathrm{H}\right), 6.11$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.2,4^{\prime}-\mathrm{H}\right), 6.59\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 2.4,1-\mathrm{H}\right)$ and $7.20-$ $8.30(40 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph})$.
(b) A solution of the derivative $\mathbf{2 2}^{1}(171 \mathrm{mg})$ in $1: 1$ methanol-ethyl acetate $\left(10 \mathrm{~cm}^{3}\right)$ containing $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(50$ mg ) was shaken under slight overpressure of hydrogen at rt for 24 h . The spent catalyst was filtered off with the aid of a Celite pad, the filtrate was concentrated and the residue was treated with HCl in $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ [as described in (a)] for 24 h followed by conventional benzoylation. FCC (toluene $\longrightarrow$ solvent $B$ ) of the residue gave the disaccharide $\mathbf{2 3}$ ( $71 \mathrm{mg}, 46 \%$ ).

## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-D-galactopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri-$O$-benzoyl- $\alpha$-d-mannopyranose 24

This compound was prepared from compound $23(142 \mathrm{mg})$ as described for the hemiacetal derivative 18. FCC (toluene $\longrightarrow$ solvent $C$ ) gave the disaccharide hemiacetal $24(94 \mathrm{mg}, 73 \%)$ as an amorphous solid, $[a]_{D}^{24}+19.5$ (c 1.01, $\mathrm{CHCl}_{3}$ ) (Found: C, 68.4; $\mathrm{H}, 4.8 . \mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$ requires C, $\left.68.4 ; \mathrm{H}, 4.7 \%\right)$; $\delta_{\mathrm{H}} 3.69(1 \mathrm{H}$, d, $\left.J_{1, \text { OH }} 4.2,1-\mathrm{OH}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{a}} 8.1, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.1,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $4.47\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 6.4,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.58(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.64(1 \mathrm{H}$, br
d, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.4,6-\mathrm{H}^{\mathrm{a}}\right), 4.72\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.6,4-\mathrm{H}\right), 4.83(1 \mathrm{H}$, ddd, $\left.J_{4^{\prime}, 5^{\prime}} 1.0,5^{\prime}-\mathrm{H}\right), 5.06\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 5.39\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}\right.$ $1.9,1-\mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 5.75\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.0,3-\mathrm{H}\right), 5.84$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.9,3^{\prime}-\mathrm{H}\right), 5.90\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 2.9,1^{\prime}-\mathrm{H}\right), 5.92$ $\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 6.06\left(1 \mathrm{H}\right.$, br d, $\left.J_{3^{\prime}, 4^{\prime}} 3.1,4^{\prime}-\mathrm{H}\right)$ and $7.10-8.20$ $(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

## 2,3,4,6-Tetra-O-benzoyl- $\alpha$-d-galactopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri-$O$-benzoyl- $\alpha$-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 25

This compound was prepared from compound $24(80 \mathrm{mg}, 0.075$ mmol ) as described for the H-phosphonate derivative 19. This produced the disaccharide hydrogenphosphonate $25(88 \mathrm{mg}$, $95 \%$ ) as a chromatographically homogeneous amorphous solid, $[a]_{\mathrm{D}}^{26}+31.4\left(c 1.07, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.30\left(9 \mathrm{H}, \mathrm{t}, 3 \times \mathrm{MeCH}_{2}\right), 2.97$ $\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{MeCH}_{2}\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.9, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.2\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.37\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 b^{\prime}} 5.2,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.63(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H}), 4.64$ $\left(1 \mathrm{H}, \mathrm{d}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.6,6-\mathrm{H}^{\mathrm{a}}\right), 4.70\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.0,4-\mathrm{H}\right)$, $4.76\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4^{\prime}, 5^{\prime}} 1.3,5^{\prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 2.4,6-\mathrm{H}^{\mathrm{b}}\right)$, $5.67\left(1 \mathrm{H}, \mathrm{t}, J_{1,2}=J_{2,3}=2.7,2-\mathrm{H}\right), 5.70(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 5.75(1 \mathrm{H}$, dd, $\left.J_{1, \mathrm{P}} 8.6,1-\mathrm{H}\right), 5.80\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 11.3,3^{\prime}-\mathrm{H}\right), 5.89(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime}-\mathrm{H}\right), 5.90\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 2^{\prime}} 3.8,2^{\prime}-\mathrm{H}\right), 6.03\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{3^{\prime}, 4^{\prime}} 2.9\right.$, $\left.4^{\prime}-\mathrm{H}\right), 7.10\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 638.8, \mathrm{HP}\right)$ and $7.10-8.15(35 \mathrm{H}, \mathrm{m}$, $7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 0.33 ; \operatorname{ESMS}(-)$ data: $m / z 1133.0(100 \%$, [M $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}^{-}\right)\left(\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{NO}_{20} \mathrm{P}\right.$ requires $\left.M, 1235.39\right)$.

## Dec-9-enyl 2,3,4,6-tetra- $O$-benzoyl- $\alpha$-D-galactopyranosyl( $1 \rightarrow 4$ )-2,3,6-tri- $O$-benzoyl- $\alpha$-D-mannopyranosyl phosphate, triethylammonium salt 26

A mixture of the H-phosphonate $\mathbf{2 5}(88 \mathrm{mg}, 0.071 \mathrm{mmol})$ and dec-9-en-1-ol ( $0.025 \mathrm{~cm}^{3}, 0.14 \mathrm{mmol}$ ) was dried by evaporation of pyridine $\left(3 \times 1 \mathrm{~cm}^{3}\right)$ therefrom. The residue was dissolved in pyridine $\left(1 \mathrm{~cm}^{3}\right)$, trimethylacetyl chloride $\left(0.022 \mathrm{~cm}^{3}, 0.18\right.$ mmol ) was added and the mixture was stirred at rt for $10-15$ min , whereafter a freshly prepared solution of iodine ( 36 mg , 0.142 mmol ) in pyridine-water $\left(95: 5 ; 1 \mathrm{~cm}^{3}\right)$ was added. After 30 min , the reaction mixture was worked up and the product was isolated, as described for the preparation of the phosphodiester 20, to give the phosphodiester $26(71 \mathrm{mg}, 72 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{28}+21.2\left(c 1.04, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.26(19 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{MeCH}_{2}$ and $\left.5 \times \mathrm{CH}_{2}\right), 1.63\left(2 \mathrm{H}\right.$, quin, $J 6.9, \mathrm{OCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$ ), $2.01\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.08(6 \mathrm{H}, \mathrm{q}$, $\left.3 \times \mathrm{MeCH}_{2}\right), 3.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 8.3\right.$, $\left.J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.0,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.1,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, 4.66-4.70 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.72\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.0,4-\mathrm{H}\right), 4.74$ $\left(1 \mathrm{H}, \mathrm{dd}, 5^{\prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 10.2, \mathrm{HCH}=\mathrm{CH}\right), 4.98$ $\left(2 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=J_{6 \mathrm{a}, 6 \mathrm{~b}}=13.4, \mathrm{HCH}=\mathrm{CH}\right.$ and $\left.6-\mathrm{H}^{\mathrm{b}}\right), 5.71(1 \mathrm{H}$, dd, $\left.J_{1,2} 1.5, J_{1, \mathrm{P}} 9.0,1-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 5.78\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}\right.$ $2.9,3-\mathrm{H}), 5.80\left(2 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 2.1,3^{\prime}-\mathrm{H}\right.$ and m, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ ), $5.88\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.2,2^{\prime}-\mathrm{H}\right), 5.89\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 3.3,1^{\prime}-\mathrm{H}\right), 6.04$ $\left(1 \mathrm{H}, \mathrm{br}, 4^{\prime}-\mathrm{H}\right)$ and $7.10-8.20(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.72$; ESMS(-) data: $m / z 1287.0\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{77} \mathrm{H}_{84}{ }^{-}\right.$ $\mathrm{NO}_{21} \mathrm{P}$ requires $M, 1389.53$ ).

## Dec-9-enyl $\alpha$-d-galactopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-d-mannopyranosyl phosphate, ammonium salt 5

De- $O$-benzoylation of compound $26(70 \mathrm{mg})$ with 0.05 mol $\mathrm{dm}^{-3} \mathrm{NaOMe}$ in MeOH followed by work-up, as described in the preparation of the phosphodiester $\mathbf{1}$, produced a crude product, which then was applied to a column $(18 \times 1.5 \mathrm{~cm})$ of Fractogel TSK DEAE-650 (S) ( $\mathrm{HCO}_{3}{ }^{-}$-form) (Merck) eluted with a linear gradient of $\mathrm{NH}_{4} \mathrm{HCO}_{3}\left(0 \longrightarrow 0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in 3:2 water-propan-2-ol at $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ to afford the phosphodisaccharide $5(28 \mathrm{mg}, 85 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{26}+78.8$ (c 1, MeOH); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $1.35\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{MeCH}_{2}\right)$, $1.62\left(2 \mathrm{H}\right.$, quin, $\left.J 6.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.05(2 \mathrm{H}, \mathrm{q}, J 6.9$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$ ), $4.97\left(1 \mathrm{H}\right.$, br d, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}} 10.2, \mathrm{CH}=\mathrm{HCH}\right), 5.04$ $\left(1 \mathrm{H}, \operatorname{br~d},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 17.2, \mathrm{CH}=H \mathrm{CH}\right), 5.33\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 1.6,1^{\prime}-\mathrm{H}\right)$,
$5.40\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 7.0,1-\mathrm{H}\right)$ and $5.90\left[1 \mathrm{H}, \mathrm{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.9\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and $\operatorname{ESMS}(-)$ data see Table 1.

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-talopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri- $O$ -benzoyl- $\alpha$-D-mannopyranose 28

This compound was prepared from compound $\mathbf{2 7}^{20}(170 \mathrm{mg})$ as described for the hemiacetalderivative 18. FCC(toluene $\longrightarrow$ solvent $B$ ) gave the disaccharide hemiacetal $\mathbf{2 8}(116 \mathrm{mg}, 75 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{24}-110\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.30$ (solvent $B$ ) (Found: C, 68.3; H, 4.7. $\mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$ requires C, 68.4; H, 4.7\%); $\delta_{\mathrm{H}} 4.02\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 8.1,5^{\prime}-\mathrm{H}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J_{6 a^{\prime}, 6 \mathrm{~b}^{\prime}} 10.5\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 66^{\prime}} 5.1,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.45\left(1 \mathrm{H}\right.$, ddd, $J_{5,6 \mathrm{a}} 2.0$, $5-\mathrm{H}), 4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.1,6-\mathrm{H}^{\mathrm{a}}\right), 4.76\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=\right.$ $9.1,4-\mathrm{H}), 4.81\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.0,6-\mathrm{H}^{\mathrm{b}}\right), 5.13\left(1 \mathrm{H}, \mathrm{br}, 1^{\prime}-\mathrm{H}\right)$, $5.41(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{H}), 5.52\left(1^{\prime} \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=3.5,3^{\prime}-\mathrm{H}\right), 5.66$ ( 1 H , br d, $\left.J_{2,3} 3.0,2-\mathrm{H}\right), 5.76\left(1 \mathrm{H}\right.$, br d, $\left.2^{\prime}-\mathrm{H}\right), 5.88(1 \mathrm{H}, \mathrm{d}$, $\left.4^{\prime}-\mathrm{H}\right), 5.93\left(1^{\prime} \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}\right)$ and $7.12-8.20(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-talopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri- $O$ -benzoyl- $\alpha$-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 29

This compound was prepared from compound 28 ( 100 mg , 0.093 mmol ) as described for the H -phosphonate derivative 19. FCC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},(99: 1) \longrightarrow(80: 20)\right]$ gave the hydrogenphosphonate 29 ( $95 \mathrm{mg}, 82 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{25}-92$ ( c 1, $\mathrm{CHCl}_{3}$ ); $R_{\mathrm{f}} 0.40$ (solvent $E$ ); $\delta_{\mathrm{H}} 1.30\left(9 \mathrm{H}, \mathrm{t}, 3 \times M e \mathrm{CH}_{2}\right)$, $3.00\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{MeCH}_{2}\right), 3.90\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 8.0,5^{\prime}-\mathrm{H}\right), 4.06$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 10.6,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 6.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.45\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{a}} 1.2,5-\mathrm{H}\right), 4.67\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.5,4-\mathrm{H}\right)$, $4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.5,6-\mathrm{H}^{\mathrm{a}}\right), 4.77\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 2.2,6-\mathrm{H}^{\mathrm{b}}\right)$, $5.06\left(1 \mathrm{H}, \mathrm{br}, 1^{\prime}-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=3.4,3^{\prime}-\mathrm{H}\right), 5.70$ $\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 2^{\prime}-\mathrm{H}\right), 5.80\left(1 \mathrm{H}\right.$, br d, $\left.J_{1, \mathrm{P}} 8.6,1-\mathrm{H}\right), 5.86(1 \mathrm{H}$, d, $\left.4^{\prime}-\mathrm{H}\right), 5.88\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.0,3-\mathrm{H}\right), 7.06\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{P}, \mathrm{H}} 635.0\right.$, HP ) and 7.10-8.20 ( $35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}$ ); $\delta_{\mathrm{P}} 0.13$; ESMS( - ) data: $m / z 1133.1\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{NO}_{20} \mathrm{P}\right.$ requires $M, 1235.39)$.

## Dec-9-enyl 2,3,4,6-tetra- $O$-benzoyl- $\beta$-d-talopyranosyl-( $1 \rightarrow \mathbf{4}$ )-2,3,6-tri- O-benzoyl- $\alpha$-d-mannopyranosyl phosphate, triethylammonium salt 30

This compound was prepared by condensation of the H phosphonate $29(75 \mathrm{mg}, 0.06 \mathrm{mmol})$ and dec-9-en-1-ol ( 0.022 $\mathrm{cm}^{3}, 0.12 \mathrm{mmol}$ ) in the presence of trimethylacetyl chloride ( $0.022 \mathrm{~cm}^{3}, 0.18 \mathrm{mmol}$ ) followed by oxidation with iodine ( 30 $\mathrm{mg}, 0.12 \mathrm{mmol}$ ) as described for the preparation of the phosphodiester 26. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},(99: 1) \longrightarrow(80: 20)\right]$ gave the phosphodiester $30(77 \mathrm{mg}, 93 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}-87\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50$ (solvent $\left.E\right) ; \delta_{\mathrm{H}} 1.30(19 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{MeCH}_{2}$ and $5 \times \mathrm{CH}_{2}$ ), $1.63\left(2 \mathrm{H}\right.$, quin, $J 6.9, \mathrm{OCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$ ), $2.01\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.10(6 \mathrm{H}, \mathrm{q}$, $3 \times \mathrm{MeCH}_{2}$ ), $3.84\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 7.2,5^{\prime}-\mathrm{H}\right), 3.94(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{6 a^{\prime}, 6 b^{\prime}} 11.0,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.12(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.0,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.47\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.0,5-\mathrm{H}\right), 4.68(1 \mathrm{H}$, $\left.\mathrm{t}, J_{3,4}=J_{4,5}=9.4,4-\mathrm{H}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.0,6-\mathrm{H}^{\mathrm{a}}\right), 4.76$ ( $\left.1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 1.2,{ }^{3} J_{\mathrm{H}, \mathrm{H}} 10.0, \mathrm{CH}=\mathrm{HCH}\right)$, $4.97\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 17.0, \mathrm{CH}=H \mathrm{CH}\right), 5.04\left(1 \mathrm{H}, \mathrm{br}, 1^{\prime}-\mathrm{H}\right), 5.44$ $\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=3.4,3^{\prime}-\mathrm{H}\right), 5.68\left(1 \mathrm{H}\right.$, br d, $\left.2^{\prime}-\mathrm{H}\right), 5.73(1 \mathrm{H}$, br d, $\left.J_{1, \mathrm{p}} 8.0,1-\mathrm{H}\right), 5.74\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime}-\mathrm{H}\right), 5.79\left[1 \mathrm{H}, \mathrm{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right)\right.$ $6.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ ], $5.85\left(1 \mathrm{H}\right.$, br d, $\left.J_{2,3} 3.0,2-\mathrm{H}\right), 5.89(1 \mathrm{H}$, dd, $3-\mathrm{H}$ ) and 7.10-8.20 ( $35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}$ ); $\delta_{\mathrm{P}}-3.09$; ESMS( - ) data: $m / z 1287.0\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{77} \mathrm{H}_{84} \mathrm{NO}_{21} \mathrm{P}\right.$ requires $M, 1389.53$ ).

## Dec-9-enyl $\boldsymbol{\beta}$-d-talopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-d-mannopyranosyl phosphate, triethylammonium salt 6

To a solution of compound $\mathbf{3 0}(77 \mathrm{mg})$ in $\mathrm{MeOH}\left(1.8 \mathrm{~cm}^{3}\right)$ was added $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ methanolic $\mathrm{NaOMe}\left(0.2 \mathrm{~cm}^{3}\right)$. The mixture was kept at rt for 17 h , whereafter it was deionized with Dowex

50W-X4 $\left(\mathrm{H}^{+}\right)$resin, filtered and immediately neutralized with $\mathrm{Et}_{3} \mathrm{~N}$. After concentration, water ( $3 \times 5 \mathrm{~cm}^{3}$ ) was evaporated off from the residue to remove methyl benzoate. The phosphodiester 6 ( $35 \mathrm{mg}, 97 \%$ ) was thereby obtained as an amorphous solid, $[a]_{\mathrm{D}}^{25}+14(c 1, \mathrm{MeOH}) ; R_{\mathrm{f}} 0.65$ (solvent $F$ ); $\delta_{\mathrm{C}}$, $\delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

## 2-O-Benzoyl-4,6-O-benzylidene-3-O-trifluoromethylsulfonyl $\beta$ -d-galactopyranosyl-( $1 \rightarrow 4$ )-1,2,3,6-tetra-O-benzoyl- $\alpha$-D-mannopyranose 32

Triflic anhydride ( $0.27 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$ ) was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of compound $31^{1}(0.38 \mathrm{~g}$, $0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ containing pyridine $\left(0.315 \mathrm{~cm}^{3}\right.$, 4 mmol ), and then the reaction mixture was allowed to warm to rt . After 1 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with ice-cold $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$, ice-cold saturated aq. $\mathrm{NaHCO}_{3}$ and water, and dried by filtration through cotton wool. The filtrate was concentrated to dryness and toluene was evaporated off from the residue. FCC [toluene-ethyl acetate, $(95: 5) \longrightarrow(9: 1)]$ gave the triffic ester $32(0.41 \mathrm{~g}, 95 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}+97.5\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.62$ (solvent $B$ ); $\delta_{\mathrm{H}} 2.76\left(1 \mathrm{H}, \mathrm{br}, 5^{\prime}-\mathrm{H}\right), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, a^{\prime}} 1.0,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.80$ ( $\left.1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 12.4,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.17\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.3,5-\mathrm{H}\right)$, $4.20\left(1 \mathrm{H}, \mathrm{brd}, 4^{\prime}-\mathrm{H}\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.4,6-\mathrm{H}^{\mathrm{a}}\right), 4.54(1 \mathrm{H}$, $\left.\mathrm{t}, J_{3,4}=J_{4,5}=9.5,4-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.9,6-\mathrm{H}^{\mathrm{b}}\right), 4.82(1 \mathrm{H}$, d, $\left.J_{1^{\prime}, 2^{\prime}} 7.6,1^{\prime}-\mathrm{H}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 3.8,3^{\prime}-\mathrm{H}\right), 5.36(1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 10.3,2^{\prime}-\mathrm{H}\right), 5.76\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.6\right.$, $2-\mathrm{H}), 5.92(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 6.38\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 2.0,1-\mathrm{H}\right)$ and $7.00-$ $8.10(30 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{Ph})$.

## 2,3-Di- $O$-benzoyl-4,6-O-benzylidene- $\beta$-d-gulopyranosyl-( $1 \rightarrow 4$ )-1,2,3,6-tetra- $O$-benzoyl- $\alpha$-d-mannopyranose 35

(a) A solution of tetrabutylammonium benzoate $(0.5 \mathrm{~g}, 1.386$ mmol ; dried beforehand by evaporation of anhydrous toluene therefrom) in toluene ( $2.5 \mathrm{~cm}^{3}$ ) was added to a solution of the triflate $32(0.375 \mathrm{~g}, 0.346 \mathrm{mmol})$ in toluene $\left(2.5 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at rt for 30 min , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool and concentrated. FCC ( $95: 5$ toluene-ethyl acetate) gave the $\beta$-D-guloside $35(0.355 \mathrm{~g}, 97 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}+35\left(c 1, \mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}} 0.60$ (solvent $B$ ) (Found: C, $69.5 ; \mathrm{H}, 4.8 . \mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{17}$ requires C, $69.4 ; \mathrm{H}, 4.8 \%)$; $\delta_{\mathrm{H}} 3.35\left(1 \mathrm{H}, \mathrm{br}, 5^{\prime}-\mathrm{H}\right), 3.67\left(1 \mathrm{H}, \mathrm{d}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}}\right.$ $\left.11.8,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.90\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.02\left(1 \mathrm{H}\right.$, br d, $\left.J_{3^{\prime}, 4} 3.0,4^{\prime}-\mathrm{H}\right)$, $4.29\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.5,5-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.2\right.$, $\left.6-\mathrm{H}^{\mathrm{a}}\right), 4.69\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right), 4.70\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.5,4-\mathrm{H}\right)$, $5.33\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.0,1^{\prime}-\mathrm{H}\right), 5.42(1 \mathrm{H}, \mathrm{s}, \operatorname{PhC} H), 5.57(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2^{\prime}, 3^{\prime}} 3.0,2^{\prime}-\mathrm{H}\right), 5.71\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 5.89\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1,2-\mathrm{H}\right)$, $6.01(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}), 6.49\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.7,1-\mathrm{H}\right)$ and $7.05-8.15$ ( $35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}$ ).
(b) Triflic anhydride $\left(0.083 \mathrm{~cm}^{3}, 0.495 \mathrm{mmol}\right)$ was added dropwise to a cooled $\left(-60{ }^{\circ} \mathrm{C}\right)$ stirred solution of the diol $\mathbf{3 3}^{20}$ $(0.14 \mathrm{~g}, 0.165 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ containing pyridine $\left(0.13 \mathrm{~cm}^{3}, 1.65 \mathrm{mmol}\right)$ and the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ with monitoring by TLC (solvent $B$ ). After 1 h , the reaction was quenched with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{HCl}\left(0.1 \mathrm{~cm}^{3}\right)$ and then the reaction mixture was allowed to warm to rt. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with icecold $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl , ice-cold saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool and concentrated. Toluene was evaporated off from the residue to produce the crude $3^{\prime}$ - $O$-triflate 34 [ $R_{\mathrm{f}} 0.3$ (solvent $\left.A\right) ; \delta_{\mathrm{H}} 2.50(1 \mathrm{H}, \mathrm{br}$, $\left.5^{\prime}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{d}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 12.0,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, 3.96-4.13 ( $3 \mathrm{H}, \mathrm{m}, 2^{\prime}-$ and $4^{\prime}-\mathrm{H}$ and OH ), $4.31(1 \mathrm{H}$, dt, $\left.J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=2.0,5-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.7,6-\mathrm{H}^{\mathrm{a}}\right), 4.46$ $\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=J_{3,4}=9.3,4-\mathrm{H}\right), 4.53\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.2,1^{\prime}-\mathrm{H}\right), 4.66$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.3, J_{3^{\prime}, 4^{\prime}} 3.6,3^{\prime}-\mathrm{H}\right), 5.29\left(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H}^{\mathrm{b}}\right)$, 5.37 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{PhC} H$ ), $5.81\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.2,2-\mathrm{H}\right), 6.00(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$, $6.55\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.8,1-\mathrm{H}\right)$ and $\left.7.20-8.20(25 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{Ph})\right]$.

A solution of compound $\mathbf{3 4}$ and tetrabutylammonium benzoate $(0.24 \mathrm{~g}, 0.66 \mathrm{mmol}$; dried beforehand by evaporation of anhydrous toluene therefrom) in toluene ( $5 \mathrm{~cm}^{3}$ ) was stirred at rt for 30 min , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed succesively with saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool and concentrated. The residue [major product - presumably the $\beta$-D-guloside 36, $R_{\mathrm{f}} 0.22$ (solvent $A$ )] was dissolved in pyridine $\left(2 \mathrm{~cm}^{3}\right)$ and benzoyl chloride ( 0.05 $\mathrm{cm}^{3}$ ) was added to the solution. The reaction mixture was kept at rt for 16 h , then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with ice-cold saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool and concentrated. FCC [as in (a)] gave the disaccharide $35(91 \mathrm{mg}, 52 \%)$ and $1,2,3,4,6-$ penta- $O$ -benzoyl- $\alpha$-D-mannopyranose ( $39 \mathrm{mg}, 34 \%$ ), which was identical (TLC and ${ }^{1} \mathrm{H}$ NMR) with the product prepared as described in ref. 25.

## 2,3,4,6-Tetra- O-benzoyl- $\boldsymbol{\beta}$-D-gulopyranosyl-( $1 \rightarrow \mathbf{4}$ )-1,2,3,6-tetra-$O$-benzoyl- $\alpha$-d-mannopyranose 37

A solution of compound $35(0.355 \mathrm{~g}, 0.337 \mathrm{mmol})$ in $80 \%$ aq. AcOH ( $10 \mathrm{~cm}^{3}$ ) was kept at $80^{\circ} \mathrm{C}$ for 5 h . The solution was concentrated to dryness and toluene was evaporated off from the residue ( $3 \times 5 \mathrm{~cm}^{3}$ ). The residue was dissolved in pyridine $\left(5 \mathrm{~cm}^{3}\right)$ and benzoyl chloride ( $0.156 \mathrm{~cm}^{3}, 1.348 \mathrm{mmol}$ ) was added to the solution. After 16 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed successively with saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried by filtration through cotton wool and concentrated to dryness. FCC [95:5 toluene-ethyl acetate] of the residue gave the disaccharide derivative $37(0.36 \mathrm{~g}, 91 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}+6\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.64$ (solvent $B$ ) (Found: C, 69.3; H, 4.8. $\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{O}_{19}$ requires C, $69.5 ; \mathrm{H}, 4.6 \%$ ); $\delta_{\mathrm{H}} 3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.1,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.09\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.6\right.$, $\left.6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.28\left(1 \mathrm{H}, \mathrm{ddd}, J_{5,6 \mathrm{a}} 1.2,5-\mathrm{H}\right), 4.39\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.7$, $\left.5^{\prime}-\mathrm{H}\right), 4.65\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 10.2,6-\mathrm{H}^{\mathrm{a}}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 2.5\right.$, $\left.6-\mathrm{H}^{\mathrm{b}}\right), 4.80\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=J_{3,4}=9.5,4-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{3^{\prime}, 4}\right.$ $\left.3.0,4^{\prime}-\mathrm{H}\right), 5.44\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.1,1^{\prime}-\mathrm{H}\right), 5.50\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 3.0\right.$, $\left.2^{\prime}-\mathrm{H}\right), 5.87\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 2.8,2-\mathrm{H}\right), 5.89\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 6.08(1 \mathrm{H}$, $\mathrm{dd}, 3-\mathrm{H}), 6.55\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 1.4,1-\mathrm{H}\right)$ and $7.20-8.20(40 \mathrm{H}, \mathrm{m}$, $8 \times \mathrm{Ph}$ ).

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-gulopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri- $O$ -benzoyl- $\alpha$-d-mannopyranose 38

This compound was prepared from compound $37(360 \mathrm{mg})$ as described for the hemiacetal derivative 18. FCC (toluene $\longrightarrow$ solvent $B$ ) gave the disaccharide hemiacetal $38(240 \mathrm{mg}, 74 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{24}-19\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.30$ (solvent $\left.B\right)$ (Found: C, 68.2; H, 4.6. $\mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$ requires C, 68.4; H, 4.7\%); $\delta_{\mathrm{H}} 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 a^{\prime}} 6.8, J_{6 \mathrm{ab}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.4,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.14(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{S^{\prime}, 6 \mathrm{~b}^{\prime}} 5.8,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.35-4.41\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 5^{\prime}-\mathrm{H}\right), 4.63(1 \mathrm{H}$, dd, $\left.J_{5,6 \mathrm{a}} 2.4, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.6,6-\mathrm{H}^{\mathrm{a}}\right), 4.68\left(1 \mathrm{H}, \mathrm{t}, J_{4,5}=J_{3,4}=9.2,4-\mathrm{H}\right), 4.74$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.6,6-\mathrm{H}^{\mathrm{b}}\right), 5.36(1 \mathrm{H}, \mathrm{br}, 1-\mathrm{H}), 5.40(1 \mathrm{H}$, br d, $\left.J_{3^{\prime}, 4^{\prime}} 3.2,4^{\prime}-\mathrm{H}\right)$, $5.42\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.4,1^{\prime}-\mathrm{H}\right), 5.47\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}}\right.$ $\left.3.2,2^{\prime}-\mathrm{H}\right), 5.66\left(1 \mathrm{H}\right.$, br d, $\left.J_{2,3} 2.8,2-\mathrm{H}\right), 5.85\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 5.99$ $(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $7.20-8.10(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-gulopyranosyl-(1 $\rightarrow \mathbf{4}$ )-2,3,6-tri- $O$ -benzoyl- $\alpha$-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 39

This compound was prepared from compound 38 ( 200 mg , 0.187 mmol ) as described for the H-phosphonate derivative 19. This produced the disaccharide hydrogenphosphonate 39 (210 $\mathrm{mg}, 90 \%$ ) as a chromatographically homogeneous amorphous solid, $[a]_{\mathrm{D}}^{26}-17\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.40$ (solvent $\left.E\right) ; \delta_{\mathrm{H}} 1.31(9 \mathrm{H}, \mathrm{t}$, $\left.3 \times M e \mathrm{CH}_{2}\right), 3.01\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{MeCH}_{2}\right), 3.91\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{ba}^{\prime}, 6 \mathrm{~b}^{\prime}}\right.$ $\left.11.0,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $4.11\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.5,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right)$, $4.30(1 \mathrm{H}$, br dd, $\left.J_{5^{\prime}, 6 a^{\prime}} 7.8,5^{\prime}-\mathrm{H}\right), 4.40\left(1 \mathrm{H}\right.$, br d, $\left.J_{4,5} 9.5,5-\mathrm{H}\right), 4.63-4.71(3 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}$ and $\left.6-\mathrm{H}_{2}\right), 5.37\left(1 \mathrm{H}\right.$, br d, $\left.J_{3^{\prime}, 4^{\prime}} 3.1,4^{\prime}-\mathrm{H}\right), 5.39\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}\right.$ $\left.7.8,1^{\prime}-\mathrm{H}\right), 5.45\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 3.11^{\prime}-\mathrm{H}\right), 5.72\left(1 \mathrm{H}, \mathrm{d}, J_{2,3} 3.1\right.$,
$2-\mathrm{H}), 5.76\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 8.9,1-\mathrm{H}\right), 5.89\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 5.95$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 9.5,3-\mathrm{H}\right), 7.03\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 635.0, \mathrm{HP}\right)$ and $7.20-$ $8.10(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}} 0.40$; ESMS(-) data: $m / z 1132.8$ $\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{NO}_{20} \mathrm{P}\right.$ requires $\left.M, 1235.39\right)$.

## Dec-9-enyl 2,3,4,6-tetra- $O$-benzoyl- $\boldsymbol{\beta}$-D-gulopyranosyl-(1 $\rightarrow 4$ )-2,3,6-tri- O-benzoyl- $\alpha$-D-mannopyranosyl phosphate, triethylammonium salt 40

This compound was prepared by condensation of the H-phosphonate 39 ( $160 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) and dec-9-en-1-ol $\left(0.046 \mathrm{~cm}^{3}, 0.26 \mathrm{mmol}\right)$ in the presence of trimethylacetyl chloride ( $0.047 \mathrm{~cm}^{3}, 0.39 \mathrm{mmol}$ ) followed by oxidation with iodine ( $65 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) as described for the preparation of the phosphodiester 26. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},(99: 1) \longrightarrow(80: 20)\right]$ gave the phosphodiester $40(125 \mathrm{mg}, 70 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}-22\left(c 1, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.50$ (solvent $\left.E\right) ; \delta_{\mathrm{H}} 1.30(19 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{MeCH}_{2}$ and $\left.5 \times \mathrm{CH}_{2}\right), 1.58\left(2 \mathrm{H}\right.$, quin, $J 6.9, \mathrm{OCH}_{2}-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.10(6 \mathrm{H}, \mathrm{q}$, $\left.3 \times \mathrm{MeCH}_{2}\right), 3.91\left(3 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}^{\mathrm{a}}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 4.11(1 \mathrm{H}$, dd, $\left.J_{5^{\prime}, 6 \mathrm{~b}^{\prime}} 5.5, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 11.0,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.26\left(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J_{5^{\prime}, 6 \mathrm{a}^{\prime}} 7.5\right.$, $\left.5^{\prime}-\mathrm{H}\right), 4.44\left(1 \mathrm{H}, \mathrm{dt}, J_{4,5} 9.7, J_{5,6 \mathrm{a}}=J_{5,6 \mathrm{~b}}=1.5,5-\mathrm{H}\right), 4.63-4.69$ $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}\right.$ and $\left.6-\mathrm{H}_{2}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 1.0,{ }^{3} J_{\mathrm{H}, \mathrm{H}} 10.3\right.$, $\mathrm{CH}=\mathrm{HCH}), 4.98\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}} 16.9, \mathrm{CH}=H \mathrm{CH}\right), 5.36(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}} 8.9,1^{\prime}-\mathrm{H}\right), 5.37\left(1 \mathrm{H}\right.$, br d, $\left.J_{3^{\prime}, 4^{\prime}} 3.0,4^{\prime}-\mathrm{H}\right), 5.45(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2^{2}, 3^{\prime}} 3.0,2^{\prime}-\mathrm{H}\right), 5.70\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.2, J_{1, \mathrm{P}} 8.2,1-\mathrm{H}\right), 5.78(1 \mathrm{H}$, dd, $\left.J_{2,3} 2.7,2-\mathrm{H}\right), 5.80\left[1 \mathrm{H}, \mathrm{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]$, $5.84\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 5.96\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 9.5,3-\mathrm{H}\right)$ and $7.20-8.10$ $(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.73$; ESMS(-) data: $m / z 1286.9(100 \%$, $\left.\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{77} \mathrm{H}_{84} \mathrm{NO}_{21} \mathrm{P}\right.$ requires $\left.M, 1389.53\right)$.

## Dec-9-enyl $\beta$-D-gulopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-mannopyranosyl

 phosphate, triethylammonium salt 7De- $O$-benzoylation of compound $\mathbf{4 0}(105 \mathrm{mg})$ with NaOMe in $\mathrm{MeOH}\left(0.05 \mathrm{~mol} \mathrm{dm}^{-3}\right)(24 \mathrm{~h}$ at rt$)$, followed by work-up as described for the synthesis of compound $\mathbf{6}$, gave the phosphodiester $7(48 \mathrm{mg}, 96 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}+8$ (c 1 , MeOH ), $R_{\mathrm{f}} 0.65$ (solvent $F$ ); $\delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and ESMS(-) data: see Table 1.

## 2,3,4,6-Tetra- $O$-benzoyl- $\alpha$-D-glucopyranosyl trichloroacetimidate 42

This compound was prepared from the hemiacetal $\mathbf{4 1}^{21}$ (310 $\mathrm{mg}, 0.52 \mathrm{mmol}$ ) as described in the preparation of the galactosyl trichloroacetimidate 14. That produced the glucosyl trichloroacetimidate $\mathbf{4 2}$ ( $357 \mathrm{mg}, 93 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{22}$ $+71\left(c 1.08, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 4.50\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{a}} 5.5, J_{6 \mathrm{a}, 6 \mathrm{~b}} 13.0,6-\mathrm{H}^{\mathrm{a}}\right)$, $4.60-4.70\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\right.$ and $\left.6-\mathrm{H}^{\mathrm{b}}\right), 5.62\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 10.0,2-\mathrm{H}\right)$, $5.82\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.0,4-\mathrm{H}\right), 6.28(1 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 6.80(1 \mathrm{H}$, d, $\left.J_{1,2} 3.5,1-\mathrm{H}\right), 7.10-8.10(20 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Ph})$ and $8.6(1 \mathrm{H}, \mathrm{s}$, NH ); $\delta_{\mathrm{C}} 62.27$ (C-6), 68.47 (C-4), 70.05 (C-2), 70.51 (C-3 and $-5), 90.51\left(\mathrm{CCl}_{3}\right), 92.92(\mathrm{C}-1), 128.21-133.38(\mathrm{Ph}), 160.19$ $(\mathrm{C}=\mathrm{NH})$ and $165.00-165.80\left(\mathrm{PhCO}_{2}\right) ; \operatorname{ESMS}(+)$ data: $\mathrm{m} / \mathrm{z}$ $579.0\left(100 \%,\left[\mathrm{M}-\mathrm{CCl}_{3} \mathrm{CONH}\right]^{+}\right)\left(\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cl}_{3} \mathrm{NO}_{10}\right.$ requires $M$, 739.08).

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-glucopyranosyl-( $1 \rightarrow \mathbf{4}$ )-1,2,3,6-tetra- $O$-benzoyl- $\alpha$-D-mannopyranose 44

(a) A mixture of the glucosyl trichloroacetimidate 42 (337 $\mathrm{mg}, 0.45 \mathrm{mmol}$ ), the tetrabenzoate $\mathbf{1 5}^{11}$ ( $332 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) and freshly activated molecular sieves $4 \AA$ (powder, 1 g ) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was stirred under argon for 30 min . TMS triflate ( $0.022 \mathrm{~cm}^{3}, 0.11 \mathrm{mmol}$ ) was added, the mixture was cooled to $-30^{\circ} \mathrm{C}$ and the stirring was continued at that temperature for a further 2 h . The reaction was quenched with a few drops of DIPEA. The solids were filtered off and the solvent was removed under reduced pressure. FCC [toluene-ethyl acetate, $(100: 0) \longrightarrow(95: 5)]$ of the residue gave the disaccharide derivative 44 ( $296 \mathrm{mg}, 56 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{22}$
$+51.5\left(c \mathrm{c}, \mathrm{CHCl}_{3}\right)$ (Found: C, 69.6; H, 4.7. $\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{O}_{19}$ requires C, $69.5 ; \mathrm{H}, 4.6 \%)$; $\delta_{\mathrm{H}} 3.78\left(1 \mathrm{H}, \mathrm{dt}, J_{4^{\prime}, 5^{\prime}} 10.0,5^{\prime}-\mathrm{H}\right), 4.05(2 \mathrm{H}, \mathrm{d}$, $\left.J_{5^{\prime}, 6^{\prime}} 3.4,6^{\prime}-\mathrm{H}_{2}\right)$, $4.23\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.5,5-\mathrm{H}\right), 4.49(1 \mathrm{H}$, dd, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}} 12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.1,6-\mathrm{H}^{\mathrm{b}}\right), 4.67(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.5,4-\mathrm{H}\right), 5.12\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.6,1^{\prime}-\mathrm{H}\right), 5.53(1 \mathrm{H}, \mathrm{dd}$, $\left.2^{\prime}-\mathrm{H}\right), 5.55\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=10.0,3^{\prime}-\mathrm{H}\right), 5.80\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right)$, $5.82(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 6.01\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.4,3-\mathrm{H}\right), 6.48(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1,2} 2.1,1-\mathrm{H}\right)$ and $7.10-8.20(40 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph})$; $\delta_{\mathrm{C}} 61.61\left(\mathrm{C}-6^{\prime}\right)$, 62.41 (C-6), 69.07 (C-2 and -4'), 70.07 (C-3), 71.35 (C-5), 71.66 (C-2'), 72.00 (C-5'), 72.49 (C-3'), 73.66 (C-4), 90.93 (C-1), $101.25\left(\mathrm{C}-1^{\prime}\right), 126.03-133.64(\mathrm{Ph})$ and $163.58-165.30\left(\mathrm{PhCO}_{2}\right)$.
(b) A solution of benzobromoglucose $\mathbf{4 3}^{26}(775 \mathrm{mg}, 1.18$ $\mathrm{mmol})$ in $\mathrm{MeCN}\left(6 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred mixture of the tetrabenzoate $\mathbf{1 5}^{11}(360 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Hg}(\mathrm{CN})_{2}$ ( $300 \mathrm{mg}, 1.2 \mathrm{mmol}$ ) and $\mathrm{HgBr}_{2}(220 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) in MeCN $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred at rt for 16 h , whereafter a second portion of the bromide $43(340 \mathrm{mg}, 0.51 \mathrm{mmol})$, $\mathrm{Hg}(\mathrm{CN})_{2}(129 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{HgBr}_{2}(92 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added. After a further 20 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. KBr , saturated aq. $\mathrm{NaHCO}_{3}$ and water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. FCC (as above) provided, first, 2,3,4,6-tetra-O-benzoyl-a-D-glucopyranosyl-( $1 \rightarrow 4$ )-1,2,3,6-tetra-O-benzoyl-a-D-mannopyranose 47 ( $117 \mathrm{mg}, 16 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{22}+49.6\left(c 1, \mathrm{CHCl}_{3}\right)$ (Found: C, 69.2; H, 4.7. $\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{O}_{19}$ requires C, $69.5 ; \mathrm{H}, 4.7 \%)$; $\delta_{\mathrm{H}} 4.34(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.42-4.60$ $\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}_{2}\right), 4.73-4.90\left(2 \mathrm{H}, \mathrm{m}, J_{6 \mathrm{aa}, 6 \mathrm{~b}} 12.6,6-\mathrm{H}_{2}\right)$, $4.90\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=10.1, \mathrm{H}-4\right), 5.41\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.70-$ $5.85\left(3 \mathrm{H}, 2-, 3-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 5.88\left(1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}} 3.9,1^{\prime}-\mathrm{H}\right), 6.12(1 \mathrm{H}$, $\left.\mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=10.4,3-\mathrm{H}\right), 6.54\left(1 \mathrm{H}, J_{1,2} 2.0,1-\mathrm{H}\right)$ and $7.15-$ $8.30(40 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{Ph})$. Continued elution gave the $\beta$-linked disaccharide derivative 44 ( $230 \mathrm{mg}, 33 \%$ ).

## 2,3,4,6-Tetra- $O$-benzoyl- $\beta$-d-glucopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri- $O$ -benzoyl- $\alpha$-d-mannopyranose 45

This compound was prepared from compound $44(300 \mathrm{mg})$ as described for the hemiacetal derivative 18. FCC (toluene $\longrightarrow$ solvent $C$ ) gave the disaccharide hemiacetal 45 ( $218 \mathrm{mg}, 80 \%$ ) as an amorphous solid, $[a]_{\mathrm{D}}^{24}+25$ (c 1.07, $\mathrm{CHCl}_{3}$ ) (Found: C, 68.2; H, 4.9. $\mathrm{C}_{61} \mathrm{H}_{50} \mathrm{O}_{18}$ requires C, 68.4; H, 4.7\%); $\delta_{\mathrm{H}} 3.62$ (1 $\left.\mathrm{H}, \mathrm{d}, J_{1, \mathrm{OH}} 4.1,1-\mathrm{OH}\right), 3.77\left(1 \mathrm{H}, \mathrm{dt}, 5^{\prime}-\mathrm{H}\right), 4.05\left(2 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}}\right.$ $\left.3.5,6^{\prime}-\mathrm{H}_{2}\right), 4.31\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.5,5-\mathrm{H}\right), 4.43\left(1 \mathrm{H}\right.$, dd, $J_{6 \mathrm{a}, 6 \mathrm{~b}}$ $\left.12.3,6-\mathrm{H}^{\mathrm{a}}\right), 4.56\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.6,4-\mathrm{H}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}}\right.$ $\left.1.5,6-\mathrm{H}^{\mathrm{b}}\right), 5.07\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{7}} 7.8,1^{\prime}-\mathrm{H}\right), 5.30\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.5\right.$, $1-\mathrm{H}), 5.53\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.6,3^{\prime}-\mathrm{H}\right), 5.54\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right)$, $5.63(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 5.79\left(1 \mathrm{H}, \mathrm{t}, J_{4^{\prime}, 5^{\prime}} 9.6,4^{\prime}-\mathrm{H}\right), 5.94(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2,3} 3.2,3-\mathrm{H}\right)$ and $7.10-8.10(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$.

## 2,3,4,6-Tetra- O-benzoyl- $\beta$-d-glucopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri-O-benzoyl- $\alpha$-D-mannopyranosyl hydrogenphosphonate, triethylammonium salt 46

This compound was prepared from compound $\mathbf{4 5}$ ( 101 mg , 0.094 mmol ) as described for the H-phosphonate derivative 19. This produced the disaccharide hydrogenphosphonate 46 (112 $\mathrm{mg}, 97 \%$ ) as a chromatographically homogeneous amorphous solid; $\delta_{\mathrm{H}} 1.36\left(9 \mathrm{H}, \mathrm{t}, 3 \times \mathrm{MeCH}_{2}\right), 3.05\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{MeCH}_{2}\right)$, $3.68\left(1 \mathrm{H}, \mathrm{dt}, 5^{\prime}-\mathrm{H}\right), 4.03\left(2 \mathrm{H}, \mathrm{d}, J_{5^{\prime}, 6^{\prime}} 3.0,6^{\prime}-\mathrm{H}_{2}\right), 4.32(1 \mathrm{H}$, ddd, $\left.J_{5,6 \mathrm{a}} 2.5,5-\mathrm{H}\right), 4.46\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.7,6-\mathrm{H}^{\mathrm{a}}\right), 4.49(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3,4}=J_{4,5}=9.3,4-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.8,6-\mathrm{H}^{\mathrm{b}}\right), 5.01(1 \mathrm{H}, \mathrm{d}$, $\left.J_{1^{\prime}, 2^{\prime}} 7.71^{\prime}-\mathrm{H}\right), 5.51\left(1 \mathrm{H}, \mathrm{t}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.8,3^{\prime}-\mathrm{H}\right), 5.52(1 \mathrm{H}$, dd, $\left.2^{\prime}-\mathrm{H}\right), 5.67(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 5.70\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 1.9, J_{1, \mathrm{P}} 9.5\right.$, $1-\mathrm{H}), 5.75\left(1 \mathrm{H}, \mathrm{t}, J_{4,5^{\prime}} 9.8,4^{\prime}-\mathrm{H}\right), 5.88\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.1,3-\mathrm{H}\right)$ $7.00\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{H}, \mathrm{P}} 637.1, \mathrm{HP}\right)$ and $7.10-8.05(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph})$; $\delta_{\mathrm{P}} 0.13$; $\operatorname{ESMS}(-)$ data: $m / z 1133.0\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)$ $\left(\mathrm{C}_{67} \mathrm{H}_{66} \mathrm{NO}_{20} \mathrm{P}\right.$ requires $\left.M, 1235.39\right)$. It should be noted, that when a solution of the hemiacetal $45(99 \mathrm{mg}, 0.092 \mathrm{mmol})$ in MeCN was prepared $40-50 \mathrm{~min}$ before the reaction with triimidazolylphosphine, mutorotation occurred that resulted in the formation of a mixture of the $\alpha$-(H-phosphonate) 46 and its
$\beta$-anomer ( $\alpha: \beta=83: 17$ ), which were not separable using FCC. The mixture was dissolved in $\mathrm{MeCN}\left(7 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{H}_{3} \mathrm{PO}_{3}(120 \mathrm{mg}, 1.47 \mathrm{mmol})$ at rt for 21 h (as described in ref. 24) to produce pure compound $\mathbf{4 6}(94 \mathrm{mg}, 83 \%)$.

## Dec-9-enyl 2,3,4,6-tetra- $O$-benzoyl- $\beta$-d-glucopyranosyl-( $1 \rightarrow 4$ )-2,3,6-tri- $O$-benzoyl- $\alpha$-D-mannopyranosyl phosphate, triethylammonium salt 48

This compound was prepared by condensation of the H-phosphonate 46 ( $92 \mathrm{mg}, 0.07 \mathrm{mmol}$ ) and dec-9-en-1-ol ( 0.027 $\left.\mathrm{cm}^{3}, 0.15 \mathrm{mmol}\right)$ in the presence of trimethylacetyl chloride ( $0.023 \mathrm{~cm}^{3}, 0.19 \mathrm{mmol}$ ) followed by oxidation with iodine ( 38 $\mathrm{mg}, 0.15 \mathrm{mmol}$ ) as described for the preparation of the phosphodiester 26. $\mathrm{FCC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{Et}_{3} \mathrm{~N},(98.9: 0.1: 1) \longrightarrow\right.$ ( $91: 8: 1$ )] gave the phosphodiester $48(90 \mathrm{mg}, 87 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{25}+23\left(c 0.96, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.33(19 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{MeCH}_{2}$ and $\left.5 \times \mathrm{CH}_{2}\right), 1.56\left(2 \mathrm{H}\right.$, quin, $J 6.9, \mathrm{OCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$ ), $2.00\left(2 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 3.66\left(1 \mathrm{H}, \mathrm{dt}, J_{5,6}\right.$ $\left.3.6,5^{\prime}-\mathrm{H}\right), 3.10\left(6 \mathrm{H}, \mathrm{q}, 3 \times \mathrm{MeCH}_{2}\right), 3.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right)$, 4.03 and $4.07\left(2 \mathrm{H}, 2 \times \mathrm{dd}, J_{6 \mathrm{a}^{\prime}, 6 \mathrm{~b}^{\prime}} 12.4,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right.$ and $\left.-\mathrm{H}^{\mathrm{b}}\right), 4.38$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5,6 \mathrm{a}} 2.9,5-\mathrm{H}\right), 4.50\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \mathrm{a}, 6 \mathrm{~b}} 11.4,6-\mathrm{H}^{\mathrm{a}}\right), 4.53$ $\left(1 \mathrm{H}, \mathrm{t}, J_{3,4}=J_{4,5}=9.7,4-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6 \mathrm{~b}} 1.3,6-\mathrm{H}^{\mathrm{b}}\right), 4.91$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}} 1.6,{ }^{3} J_{\mathrm{H}, \mathrm{H}} 10.1, \mathrm{CH}=\mathrm{HCH}\right), 4.97\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{H}, \mathrm{H}}\right.$ 17.1, $\mathrm{CH}=H \mathrm{CH}), 5.03\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.7,1^{\prime}-\mathrm{H}\right), 5.51(1 \mathrm{H}, \mathrm{t}$, $\left.J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.8,3^{\prime}-\mathrm{H}\right), 5.52\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.65\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2}\right.$ $\left.1.6, J_{1, \mathrm{P}} 7.9,1-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 5.74\left(1 \mathrm{H}, \mathrm{t}, J_{4,5^{\prime}} 9.8\right.$, $\left.4^{\prime}-\mathrm{H}\right), 5.79\left[1 \mathrm{H}, \mathrm{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.9, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right], 5.90(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{2,3} 3.5,3-\mathrm{H}\right)$ and $7.20-8.10(35 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{Ph}) ; \delta_{\mathrm{P}}-2.81$; ESMS(-) data: $m / z 1287.0\left(100 \%,\left[\mathrm{M}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{H}\right]^{-}\right)\left(\mathrm{C}_{77} \mathrm{H}_{84}{ }^{-}\right.$ $\mathrm{NO}_{21} \mathrm{P}$ requires $M, 1389.53$ ).

## Dec-9-enyl $\beta$-d-glucopyranosyl-( $1 \rightarrow 4$ )- $\alpha$-D-mannopyranosyl phosphate, triethylammonium salt 8

De- $O$-benzoylation of compound $48(87 \mathrm{mg})$ with NaOMe in $\mathrm{MeOH}\left(0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 20 \mathrm{~cm}^{3}\right.$ ), followed by work-up as described for the synthesis of compound 6, gave the phosphodiester $8(38 \mathrm{mg}, 92 \%)$ as an amorphous solid, $[a]_{\mathrm{D}}^{27}+19(c$ $0.99, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ (inter alia) $1.25\left(19 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{MeCH}_{2}\right.$ and $\left.5 \times \mathrm{CH}_{2}\right), 1.52\left(2 \mathrm{H}\right.$, quin, $\left.J 6.9, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.98(2 \mathrm{H}$, $\left.\mathrm{q}, J 6.9, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\right), 4.42\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 7.7,1^{\prime}-\mathrm{H}\right), 5.31(1 \mathrm{H}$, $\left.\mathrm{br} \mathrm{d}, J_{1, \mathrm{P}} 6.8,1-\mathrm{H}\right)$ and $5.83\left[1 \mathrm{H}, \mathrm{ddt}, J\left(\mathrm{H}, \mathrm{CH}_{2}\right) 6.9\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right] ; \delta_{\mathrm{C}}, \delta_{\mathrm{P}}$ and $\operatorname{ESMS}(-)$ data: see Table 1.

## Acknowledgements

This work and I. A. I. were supported by a Wellcome Trust International Grant. The research of A. V. N. was supported by an International Research Scholar's award from the Howard Hughes Medical Institute. One of us (A. J. R.) thanks the BBSRC for the award of a studentship. We thank Prof. A. S. Shashkov (Moscow) for recording and assignment of the NMR spectra of D-talopyranose and D-gulopyranose derivatives.

## References

1 Part 8, A. P. Higson, Yu. E. Tsvetkov, M. A. J. Ferguson and A. V. Nikolaev, J. Chem. Soc., Perkin Trans. 1, 1998, 2587.

2 M. J. McConville and M. A. J. Ferguson, Biochem. J., 1993, 294, 305.

3 M. J. McConville, L. F. Schnur, C. Jaffe and P. Schneider, Biochem. J., 1995, 310, 807.

4 T. Ilg, R. Etges, P. Overath, M. J. McConville, J. E. Thomas-Oates, J. Thomas, S. W. Homans and M. A. J. Ferguson, J. Biol. Chem., 1992, 267, 6834.
5 T. Ilg, P. O. Overath, M. A. J. Ferguson, T. Rutherford, D. G. Campbell and M. J. McConville, J. Biol. Chem., 1994, 269, 24073.
6 Y.-D. Stierhof, M. Wiese, T. Ilg, P. Overath, M. Haener and U. Aebi, J. Mol. Biol., 1998, 282, 137.

7 T. Ilg, Y.-D. Stierhof, D. Craik, R. Simpson, E. Handman and A. Bacic, J. Biol. Chem., 1996, 271, 21583.

8 T. Ilg, D. Craik, G. Currie, G. Multhaup and A. Bacic, J. Biol. Chem., 1998, 273, 13509.

9 C. Peters, Y.-D. Stierhof and T. Ilg, Infect. Immun., 1997, 65, 783.
10 C. Peters, M. Kawakami, M. Kaul, T. Ilg, P. Overath and T. Aebischer, Eur. J. Immunol., 1997, 27, 2666.

11 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1995, 1977.
12 A. V. Nikolaev, T. J. Rutherford, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1996, 1559.
13 A. V. Nikolaev, G. M. Watt, M. A. J. Ferguson and J. S. Brimacombe, J. Chem. Soc., Perkin Trans. 1, 1997, 969.
14 A. V. Nikolaev, J. A. Chudek and M. A. J. Ferguson, Carbohydr. Res., 1995, 272, 179.
15 G. M. Brown, A. R. Millar, C. Masterson, J. S. Brimacombe, A. V. Nikolaev and M. A. J. Ferguson, Eur. J. Biochem., 1996, 242, 410.

16 A. V. Nikolaev, I. A. Ivanova, V. N. Shibaev and N. K. Kochetkov, Carbohydr. Res., 1990, 204, 65.
17 A. Hasegawa, K. Adachi, M. Yoshida and M. Kiso, Carbohydr. Res., 1992, 230, 273.
18 B. Lou, H. K. Huynh and S. Hanessian, in Preparative Carbohydrate

Chemistry, ed. S. Hanessian, Marcel Dekker, New York, 1997, pp. 431-448.
19 N. E. Byramova, M. V. Ovchinnikov, L. V. Backinowsky and N. K. Kochetkov, Carbohydr. Res., 1983, 124, c8.
20 I. A. Ivanova and A. V. Nikolaev, J. Chem. Soc., Perkin Trans. 1, 1998, 3093.
21 G. I. Eliseeva, I. A. Ivanova, A. V. Nikolaev and V. N. Shibaev, Sov. J. Bioorg. Chem. (Engl. Transl.), 1991, 17, 808.
22 J. V. O'Connor, H. A. Nunez and R. Barker, Biochemistry, 1979, 18, 500.

23 J. O. Defferary and V. Deulofeu, J. Org. Chem., 1952, 17, 1097.
24 N. S. Utkina, A. V. Nikolaev and V. N. Shibaev, Sov. J. Bioorg. Chem. (Engl. Transl.), 1991, 17, 303.
25 R. K. Ness, H. G. Fletcher, Jr. and C. S. Hudson, J. Am. Chem. Soc., 1950, 72, 2200.
26 R. K. Ness, H. G. Fletcher, Jr. and C. S. Hudson, J. Am. Chem. Soc., 1951, 73, 959.

